Normal approximation to the distribution of a cell entry in a 2×2×2 contingency table

1975 ◽  
Vol 4 (8) ◽  
pp. 699-709 ◽  
Author(s):  
A.V. Godambe ◽  
W.L. Harkness
2000 ◽  
Vol 74 (1) ◽  
pp. 295-304 ◽  
Author(s):  
Dimitri Lavillette ◽  
Alessia Ruggieri ◽  
Stephen J. Russell ◽  
François-Loïc Cosset

ABSTRACT Mutations that negatively or positively affect the fusion properties of murine leukemia viruses (MLVs) have been found within all subdomains of their SU (surface) and TM (transmembrane) envelope units. Yet, the interrelations between these different regions of the envelope complex during the cell entry process are still elusive. Deletion of the histidine residue of the conserved PHQV motif at the amino terminus of the amphotropic or the ecotropic MLV SU resulted in the AdelH or the MOdelH fusion-defective mutant envelope, respectively. These delH mutant envelopes are incorporated on retroviral particles at normal densities and normally mediate virion binding to cells expressing the retroviral receptors. However, both their cell-cell and virus-cell fusogenicities were fully prevented at an early postbinding stage. We show here that the fusion defect of AdelH or MOdelH envelopes was also almost completely reverted by providing either soluble SU or a polypeptide encompassing the receptor-binding domain (RBD) to the target cells, provided that the integrity of the amino-terminal end of either polypeptide was preserved. Restoration of delH envelope fusogenicity was caused by activation of the target cells via specific interaction of the latter polypeptides with the retrovirus receptor rather than by their association with the delH envelope complexes. Moreover crossactivation of the target cells, leading to fusion activation of AdelH or MOdelH envelopes, was achieved by polypeptides containing various type C mammalian retrovirus RBDs, irrespective of the type of entry-defective glycoprotein that was used for infection. Our results indicate that although they recognize different receptors for binding to the cell surface, type C mammalian retroviruses use a common entry pathway which is activated by a conserved feature of their envelope glycoproteins.


2005 ◽  
Vol 79 (1) ◽  
pp. 615-618 ◽  
Author(s):  
Joanna Gilbert ◽  
Jean Dahl ◽  
Cathy Riney ◽  
John You ◽  
Cunqi Cui ◽  
...  

ABSTRACT Recent investigations on the pathway of cell entry by polyomavirus (Py) and simian virus 40 (SV40) have defined specific gangliosides as functional receptors mediating virus binding and transport from the plasma membrane to the endoplasmic reticulum (B. Tsai et al., EMBO J. 22:4346-4355, 2003; Gilbert and Benjamin, in press). These studies were carried out with C6 rat glioma cells, a heterologous host chosen for its known deficiency in ganglioside biosynthesis. Here, a cell genetic approach was undertaken to identify components required for the early steps of infection using mouse cells as the natural host for Py. Receptor-negative (R−) mouse cells, screened based on resistance to Py infection, were shown to bind Py but failed to allow entry of the virus. R− cells were also found to be resistant to SV40. Infectibility was restored or enhanced by the addition of the same specific gangliosides found in earlier studies with C6 cells. In one R− line, overexpression of caveolin-1 also increased infectibility. These results support and extend findings on gangliosides in lipid rafts as functional receptors and mediators of internalization for Py and SV40.


2021 ◽  
pp. 167350
Author(s):  
Xiaodi Yu ◽  
Tina-Marie Mullen ◽  
Vahid Abrishami ◽  
Juha T. Huiskonen ◽  
Glen R. Nemerow ◽  
...  

2008 ◽  
Vol 36 (6) ◽  
pp. 1409-1413 ◽  
Author(s):  
Daniel A. Bonsor ◽  
Nicola A. Meenan ◽  
Colin Kleanthous

The translocation of protein toxins into a cell relies on a myriad of protein–protein interactions. One such group of toxins are enzymatic E colicins, protein antibiotics produced by Escherichia coli in times of stress. These proteins subvert ordinary nutrient uptake mechanisms to enter the cell and unleash nuclease activity. We, and others, have previously shown that uptake of ColE9 (colicin E9) is dependent on engagement of the OM (outer membrane) receptors BtuB and OmpF as well as recruitment of the periplasmic protein TolB, forming a large supramolecular complex. Intriguingly, colicins bind TolB using a natively disordered region to mimic the interaction of TolB with Pal (peptidoglycan-associated lipoprotein). This is thought to trigger OM instability and prime the system for translocation. Here, we review key interactions in the assembly of this ‘colicin translocon’ and discuss the key role disorder plays in achieving uptake.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 109
Author(s):  
Xuhua Xia

The spike protein in SARS-CoV-2 (SARS-2-S) interacts with the human ACE2 receptor to gain entry into a cell to initiate infection. Both Pfizer/BioNTech’s BNT162b2 and Moderna’s mRNA-1273 vaccine candidates are based on stabilized mRNA encoding prefusion SARS-2-S that can be produced after the mRNA is delivered into the human cell and translated. SARS-2-S is cleaved into S1 and S2 subunits, with S1 serving the function of receptor-binding and S2 serving the function of membrane fusion. Here, I dissect in detail the various domains of SARS-2-S and their functions discovered through a variety of different experimental and theoretical approaches to build a foundation for a comprehensive mechanistic understanding of how SARS-2-S works to achieve its function of mediating cell entry and subsequent cell-to-cell transmission. The integration of structure and function of SARS-2-S in this review should enhance our understanding of the dynamic processes involving receptor binding, multiple cleavage events, membrane fusion, viral entry, as well as the emergence of new viral variants. I highlighted the relevance of structural domains and dynamics to vaccine development, and discussed reasons for the spike protein to be frequently featured in the conspiracy theory claiming that SARS-CoV-2 is artificially created.


mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Krishanthi S. Karunatilaka ◽  
David J. Filman ◽  
Mike Strauss ◽  
Joseph J. Loparo ◽  
James M. Hogle

ABSTRACT Genome transfer from a virus into a cell is a critical early step in viral replication. Enveloped viruses achieve the delivery of their genomes into the cytoplasm by merging the viral membrane with the cellular membrane via a conceptually simple mechanism called membrane fusion. In contrast, genome translocation mechanisms in nonenveloped viruses, which lack viral membranes, remain poorly understood. Although cellular assays provide useful information about cell entry and genome release, it is difficult to obtain detailed mechanistic insights due both to the inherent technical difficulties associated with direct visualization of these processes and to the prevalence of nonproductive events in cellular assays performed at a very high multiplicity of infection. To overcome these issues, we developed an in vitro single-particle fluorescence assay to characterize genome release from a nonenveloped virus (poliovirus) in real time using a tethered receptor-decorated liposome system. Our results suggest that poliovirus genome release is a complex process that consists of multiple rate-limiting steps. Interestingly, we found that the addition of exogenous wild-type capsid protein VP4, but not mutant VP4, enhanced the efficiency of genome translocation. These results, together with prior structural analysis, suggest that VP4 interacts with RNA directly and forms a protective, membrane-spanning channel during genome translocation. Furthermore, our data indicate that VP4 dynamically interacts with RNA, rather than forming a static tube for RNA translocation. This study provides new insights into poliovirus genome translocation and offers a cell-free assay that can be utilized broadly to investigate genome release processes in other nonenveloped viruses. IMPORTANCE The initial transfer of genomic material from a virus into a host cell is a key step in any viral infection. Consequently, understanding how viruses deliver their genomes into cells could reveal attractive therapeutic targets. Although conventional biochemical and cellular assays have provided useful information about cell entry, the mechanism used to deliver the viral genomes across the cellular membrane into the cytoplasm is not well characterized for nonenveloped viruses such as poliovirus. In this study, we developed a fluorescence imaging assay to visualize poliovirus genome release using a synthetic vesicle system. Our results not only provide new mechanistic insights into poliovirus genome translocation but also offer a cell-free assay to bridge gaps in understanding of this process in other nonenveloped viruses.


2000 ◽  
Vol 74 (18) ◽  
pp. 8757-8761 ◽  
Author(s):  
Yan Huang ◽  
James M. Hogle ◽  
Marie Chow

ABSTRACT Poliovirus binding to its receptor (PVR) on the cell surface induces a conformational transition which generates an altered particle with a sedimentation value of 135S versus the 160S of the native virion. A number of lines of evidence suggest that the 135S particle is a cell entry intermediate. However, the low infection efficiencies of the 135S particle and the absence of detectable 135S particles during infection at 26°C by the cold-adapted mutants argue against a role for the 135S particle during the cell entry process. We show here that binding of 135S-antibody complexes to the Fc receptor (CDw32) increases the infectivity of these particles by 2 to 3 orders of magnitude. Thus, the low efficiency of infection by 135S particles is due in part to the low binding affinity of these particles. In addition, we show that there is an additional stage in the entry process that is associated with RNA release. This stage occurs after formation of the 135S particle, is rate limiting during infection at 37°C, but not at 26°C, and is PVR independent. The data also demonstrate that during infection at 26°C, the rate-limiting step is the PVR-mediated conversion of wild-type 160S particles to 135S particles. This suggests that during infection at 26°C by the cold-adapted viruses, 135S particles are formed, but they fail to accumulate to detectable levels because the subsequent post-135S particle events occur at a significantly faster rate than the initial conversion of 160S to 135S particles. These data support a model in which the 135S particle is an intermediate during poliovirus entry.


Parasitology ◽  
1997 ◽  
Vol 115 (4) ◽  
pp. 371-380 ◽  
Author(s):  
A. HEMPHILL ◽  
N. FUCHS ◽  
S. SONDA ◽  
B. GOTTSTEIN ◽  
B. HENTRICH

Neospora caninum, the causative agent of neosporosis, is a recently identified apicomplexan parasite which is structurally and biologically closely related to, but antigenically distinct from, Toxoplasma gondii. Molecules associated with the surfaces of N. caninum tachyzoites are likely to participate in the host cell entry process, could be involved in the interaction of the parasite with the immune system, and they could influence the pathogenesis of neosporosis. Isolated N. caninum tachyzoites were extracted with the non-ionic detergent Triton X–114 and were further analysed using a polyclonal anti-N. caninum antiserum. Immunoblots revealed several reactive bands, 1 of which represented a glycoprotein of approximately 36 kDa (Nc-p36). This molecule was present in 2 isolates of Neospora (NC-1 and Liverpool), but was absent in Toxoplasma (RH-strain) tachyzoites. Immunofluorescence and pre-embedding immunogold transmission electron microscopy employing affinity-purified anti-Nc-p36 antibodies showed that the Nc-p36 is a cell surface-associated protein. Immunogold on-section labelling of LR-White-embedded parasites, fixed prior and at defined time-points after host cell entry, demonstrated the presence of this molecule on the surface as well as within the dense granules of N. caninum tachyzoites.


Sign in / Sign up

Export Citation Format

Share Document