Tillage and crop residue incorporation effects on soil bacterial diversity in the double-cropping paddy field of southern China

Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Kaikai Cheng ◽  
Lihong Shi ◽  
...  
2020 ◽  
Vol 112 (5) ◽  
pp. 3644-3652
Author(s):  
Haiming Tang ◽  
Yilan Xu ◽  
Chao Li ◽  
Xiaoping Xiao ◽  
Kaikai Cheng ◽  
...  

2020 ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Xiaochen Pan ◽  
Kaikai Cheng ◽  
...  

AbstractThe soil physicochemical properties were affected by different fertilizer managements, and the soil microbial communities were changed. Fertilizer regimes were closely relative to the soil texture and nutrient status in a double-cropping paddy field of southern China. However, there was limited information about the influence of different long-term fertilizer management practices on the soil microbial communities in a double-cropping rice (Oryza sativa L.) fields. Therefore, the 39-year long-term fertilizer regimes on soil bacterial and fungal diversity in a double-cropping paddy field of southern China were studied by using Illumina sequencing and quantitative PCR technology in the present paper. The filed experiment were including chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). The results showed that diversity indices of soil microbial communities with application of organic manure and rice straw residue treatments were higher than that without fertilizer input treatment. Application of organic manure and rice straw residue managements increase soil bacterial abundance of the phylum Proteobacteria, Actinobacteria, and Gammaproteobacteria, and soil fungi abundance of the phylum Basidiomycota, Zygomycota and Tremellales were also increased. Compared with CK treatment, the value of Richness, Shannon and McIntosh indices, and taxonomic diversity were increased with RF and OM treatments. This finding demonstrated that RF and OM treatments modify soil bacterial and fungal diversity. Therefore, the combined application of organic manure or rice straw residue with chemical fertilizer managements could significantly increase the abundance of profitable functional bacteria and fungi species in double-cropping rice fields of southern China.


2019 ◽  
Vol 66 (5) ◽  
pp. 694-705 ◽  
Author(s):  
Baiyun He ◽  
Xingwu Duan ◽  
Li Rong ◽  
Ruihuan Zhang ◽  
Ya Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Lihong Shi ◽  
Kaikai Cheng ◽  
...  

AbstractCarbon (C) plays an important role in maintaining soil fertility and increasing soil microbial community, but there is still limited information about how source utilization characteristics respond to soil fertility changes under double-cropping rice (Oryza sativa L.) system in southern China paddy field. Therefore, the effects of different short-term (5-years) tillage management on characteristics of C utilization in rice rhizosphere and non-rhizosphere soils under double-cropping rice field in southern China were investigated by using 18O incorporation into DNA. Therefore, a field experiment were included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), rotary tillage with crop residue removed as control (RTO). The results showed that soil microbial biomass C content with CT, RT, NT treatments were increased by 29.71–47.27% and 3.77–21.30% in rhizosphere and non-rhizosphere soils, compared with RTO treatment, respectively. Compared with RTO treatment, soil microbial basal respiration and microbial growth rate with CT treatment were increased 30.56%, 30.94% and 11.91%, 12.34% in rhizosphere and non-rhizosphere soils, respectively. The soil microbial C utilization efficiency were promoted with NT treatment. Compared with RTO treatment, the metabolic capacity of soil microorganism to exogenous C source with CT, RT and NT treatments were increased. The largest type of exogenous C source was saccharides, followed by amino acid and polymers, and complex compounds was the smallest. The redundancy analysis results indicated that tillage treatments significantly changed the utilization characteristics of soil microorganism to exogenous C source. Compared with RTO treatment, the grain yield of early rice and late rice with CT treatment were increased by 409.5 kg ha−1 and 387.0 kg ha−1, respectively. Therefore, the CT and RT treatments could significantly increase soil microbial biomass C content, but the NT treatment promote microbial C utilization efficiency in the double-cropping paddy field of southern China.


Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


2013 ◽  
Vol 33 (4) ◽  
pp. 211-216 ◽  
Author(s):  
Haifang Zhang ◽  
Xiaolong Song ◽  
Cailing Wang ◽  
Hongmei Liu ◽  
Jingni Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document