scholarly journals Microbial carbon source utilization in rice rhizosphere soil with different tillage practice in a double cropping rice field

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Lihong Shi ◽  
Kaikai Cheng ◽  
...  

AbstractCarbon (C) plays an important role in maintaining soil fertility and increasing soil microbial community, but there is still limited information about how source utilization characteristics respond to soil fertility changes under double-cropping rice (Oryza sativa L.) system in southern China paddy field. Therefore, the effects of different short-term (5-years) tillage management on characteristics of C utilization in rice rhizosphere and non-rhizosphere soils under double-cropping rice field in southern China were investigated by using 18O incorporation into DNA. Therefore, a field experiment were included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), rotary tillage with crop residue removed as control (RTO). The results showed that soil microbial biomass C content with CT, RT, NT treatments were increased by 29.71–47.27% and 3.77–21.30% in rhizosphere and non-rhizosphere soils, compared with RTO treatment, respectively. Compared with RTO treatment, soil microbial basal respiration and microbial growth rate with CT treatment were increased 30.56%, 30.94% and 11.91%, 12.34% in rhizosphere and non-rhizosphere soils, respectively. The soil microbial C utilization efficiency were promoted with NT treatment. Compared with RTO treatment, the metabolic capacity of soil microorganism to exogenous C source with CT, RT and NT treatments were increased. The largest type of exogenous C source was saccharides, followed by amino acid and polymers, and complex compounds was the smallest. The redundancy analysis results indicated that tillage treatments significantly changed the utilization characteristics of soil microorganism to exogenous C source. Compared with RTO treatment, the grain yield of early rice and late rice with CT treatment were increased by 409.5 kg ha−1 and 387.0 kg ha−1, respectively. Therefore, the CT and RT treatments could significantly increase soil microbial biomass C content, but the NT treatment promote microbial C utilization efficiency in the double-cropping paddy field of southern China.

2019 ◽  
Vol 111 (1) ◽  
pp. 440-447 ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Wenguang Tang ◽  
Kaikai Cheng ◽  
...  

2020 ◽  
Author(s):  
Haiming Tang ◽  
Xiaoping Xiao ◽  
Chao Li ◽  
Xiaochen Pan ◽  
Kaikai Cheng ◽  
...  

AbstractThe soil physicochemical properties were affected by different fertilizer managements, and the soil microbial communities were changed. Fertilizer regimes were closely relative to the soil texture and nutrient status in a double-cropping paddy field of southern China. However, there was limited information about the influence of different long-term fertilizer management practices on the soil microbial communities in a double-cropping rice (Oryza sativa L.) fields. Therefore, the 39-year long-term fertilizer regimes on soil bacterial and fungal diversity in a double-cropping paddy field of southern China were studied by using Illumina sequencing and quantitative PCR technology in the present paper. The filed experiment were including chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM), and without fertilizer input as a control (CK). The results showed that diversity indices of soil microbial communities with application of organic manure and rice straw residue treatments were higher than that without fertilizer input treatment. Application of organic manure and rice straw residue managements increase soil bacterial abundance of the phylum Proteobacteria, Actinobacteria, and Gammaproteobacteria, and soil fungi abundance of the phylum Basidiomycota, Zygomycota and Tremellales were also increased. Compared with CK treatment, the value of Richness, Shannon and McIntosh indices, and taxonomic diversity were increased with RF and OM treatments. This finding demonstrated that RF and OM treatments modify soil bacterial and fungal diversity. Therefore, the combined application of organic manure or rice straw residue with chemical fertilizer managements could significantly increase the abundance of profitable functional bacteria and fungi species in double-cropping rice fields of southern China.


2021 ◽  
Author(s):  
Laurent Kidinda Kidinda ◽  
Folasade Kemi Ologoke ◽  
Cordula Vogel ◽  
Karsten Kalbitz ◽  
Sebastian Doetterl

<p>Microbial processes are one of the key factors driving carbon (C) and nutrient cycling in terrestrial ecosystems, and are strongly controlled by the equilibrium between resource availability and demand. In deeply weathered tropical rainforest soils of Africa, it remains unclear whether patterns of microbial processes differ between soils developed from geochemically contrasting parent material. Here, we investigate patterns of soil microbial processes and their controls in tropical rainforests of Africa. We used soil developed from three geochemically distinct parent material (mafic, felsic, mixed sedimentary rocks) and three soil depths (0−70 cm). We measured microbial biomass C and enzyme activity at the beginning and end of a 120-day incubation experiment. We also conducted a vector analysis based on ecoenzymatic stoichiometry to assess microbial C and nutrient limitations. We found that microbial C limitation was highest in the mixed sedimentary region and lowest in the felsic region, which we propose was related to the strength of contrasting C stabilization mechanisms and varying C quality. None of the investigated regions and soil depths showed signs of nitrogen (N) limitation for microbial processes. Microbial phosphorus (P) limitation increased with soil depth, indicating that subsoils in the investigated soils were depleted in rock-derived nutrients and are therefore dependent on efficient nutrient recycling. Microbial C limitation was lowest in subsoils, indicating that subsoil microbes cannot significantly participate in C cycling and limit C storage if oxygen is not available, but can do so in our laboratory incubation experiment under well aerated conditions. Using multivariable regressions, we demonstrate that microbial biomass C normalized to soil organic C content (MBC<sub>SOC</sub>) is controlled by soil geochemistry and substrate quality, while microbial biomass C normalized to soil weight (MBC<sub>Soil</sub>) is predominantly driven by resource distribution (i.e., depth distribution of organic C). We conclude that due to differences in resource availability, microbial processes in deeply weathered tropical rainforest soils greatly vary across geochemical regions.</p>


2014 ◽  
Vol 94 (4) ◽  
pp. 551-562 ◽  
Author(s):  
Matthew Dil ◽  
Maren Oelbermann ◽  
Wei Xue

Dil, M., Oelbermann, M. and Xue, W. 2014. An evaluation of biochar pre-conditioned with urea ammonium nitrate on maize (Zea mays L.) production and soil biochemical characteristics. Can. J. Soil Sci. 94: 551–562. Biochar can enhance soil fertility, plant nutrient uptake and crop production. Using a potted study, we quantified the effects of adding biochar at 1 t ha−1 (Char), biochar pre-conditioned with urea ammonium nitrate [UAN (Char+)], or UAN only to a control (Contr) with no amendments on maize (Zea mays L.) biomass production, tissue carbon (C) and nitrogen (N) concentrations, N uptake (NU), N utilization efficiency (NUtE), and soil chemistry and biology in coarse-, medium- and fine-textured soils over 6 wk. Soil pH decreased (P<0.05) in Char+ and UAN treatments for all soil textures. Soil organic carbon (SOC) increased (P<0.05) in the coarse and medium textured soil in Char and Char+ treatments. Soil ammonium and soil nitrate were different (P<0.05) among treatments; increasing or decreasing depending upon soil texture. Soil microbial biomass C was lowest (P<0.05) in the UAN treatment for all soil textures. Soil potential microbial activity was significantly greater in the coarse-textured soil in only the Char and Char+ treatments. Maize biomass, tissue N concentration, and NU increased (P<0.05) in soils amended with Char+ or UAN only. NUtE was lower (P<0.05) in Char+ and UAN treatments in the coarse- and medium-textured soils, but this was reversed for the fine-textured soil.


Sign in / Sign up

Export Citation Format

Share Document