Nutrient reduction by biomanipulation: An unexpected phenomenon and its possible cause

1984 ◽  
Vol 22 (1) ◽  
pp. 518-524 ◽  
Author(s):  
David I. Wright ◽  
Joseph Shapiro
2004 ◽  
Vol 146 (10) ◽  
pp. 461-469 ◽  
Author(s):  
S. Staebler ◽  
E. Buergi ◽  
B. Litzenberger ◽  
K. McCullough ◽  
I. McNair ◽  
...  

Author(s):  
Gonzalo Flores-Morales ◽  
Mónica Díaz ◽  
Patricia Arancibia-Avila ◽  
Michelle Muñoz-Carrasco ◽  
Pamela Jara-Zapata ◽  
...  

Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.


2009 ◽  
Vol 4 (3) ◽  
Author(s):  
I. Venner ◽  
J. Husband ◽  
J. Noonan ◽  
A. Nelson ◽  
D. Waltrip

In response to rapid population growth as well as to address the nutrient reduction goals for the Chesapeake Bay established by the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Sanitation District (HRSD) initiated the York River Treatment Plant (YRTP) Expansion Phase 1 project. The existing YRTP is a conventional step-feed activated sludge plant and is rated for an average daily design flow of 57 million liters per day (MLD). This project proposes to expand the existing treatment capacity to 114 MLD and to reduce the nutrients discharged to the York River, a tributary for the Chesapeake Bay. In order to meet the effluent limits set by the VDEQ, a treatment upgrade to limit of technology (LOT) or enhanced nutrient removal (ENR) was required. Malcolm Pirnie worked with HRSD and the VDEQ to develop and evaluate ENR process alternatives to achieve the required effluent limits with the goal of determining the most reliable and cost effective alternative to achieve the aggressive nutrient reduction goals. This paper will highlight the key issues in determining the most desirable treatment process considering both economic and non-economic factors.


Sign in / Sign up

Export Citation Format

Share Document