Removal of nutrients from Organic Liquid Agricultural Waste using filamentous algae.

Author(s):  
Gonzalo Flores-Morales ◽  
Mónica Díaz ◽  
Patricia Arancibia-Avila ◽  
Michelle Muñoz-Carrasco ◽  
Pamela Jara-Zapata ◽  
...  

Abstract A feasibility analysis of tertiary treatment for Organic Liquid Agricultural Waste is presented using filamentous algae belonging to the genus Cladophora sp. as an alternative to chemical tertiary treatment. The main advantages of tertiary treatments that use biological systems are the low cost investment and the minimal dependence on environmental variables. In this work we demonstrate that filamentous algae reduces the nutrient load of nitrate (circa 75%) and phosphate (circa 86%) from the organic waste effluents coming from dairy farms after nine days of culture, with the added advantage being that after the treatment period, algae removal can be achieved by simple procedures. Currently, the organic wastewater is discarded into fields and local streams. However, the algae can acquire value as a by-product since it has various uses as compost, cellulose, and biogas. A disadvantage of this system is that clean water must be used to achieve enough water transparency to allow algae growth. Even so, the nutrient reduction system of the organic effluents proposed is friendly to the ecosystem, compared to tertiary treatments that use chemicals to precipitate and collect nutrients such as nitrates and phosphates.

Author(s):  
Suhas S. Gonawala ◽  
Hemali Jardosh

This work studied on the composting process of organic waste. Organic waste is the easily biodegradable waste. Organic wastes are produced from many sources Such as agricultural waste, market waste, kitchen waste, urban solid waste and municipal solid waste. Without proper management, this waste could create several environments problem. Therefore, composting is the best low-cost alternative solution to overcome this problem. The composting method can degrade all types of organic waste such as fruits, vegetables, plants, yard waste and others. The organic waste composition can be used as nutrients for crops, soil additives and for environmental management. However, many factors can contribute to the quality of compost products since different types of organic waste have different concentrations of nutrients, Nitrogen, Phosphorus and Potassium (N, P, K) that are the common macro energetics present in fertilizers. The presence of heavy metals shows how Composts can be applied to soils without contributing any negative effects. In terms of the factor affecting the composting process, temperature, pH, moisture content and carbon nitrogen ratio (C: N) are the main parameters that contribute to the efficiency of the composting process.


2021 ◽  
Vol 3 (144) ◽  
pp. 22-31
Author(s):  
Viktor S. Grigor’yev ◽  
◽  
Il’ya V. Romanov

The ability of gas hydrates to concentrate gas into a solid chelate structure and the properties of self-preservation of gas hydrates at negative temperatures allows us to consider the possibility of developing a method for the utilization of biogas, environmentally safe storage and transportation of biomethane. (Research purpose) The research purpose is in substantiation the technological possibilities of obtaining synthetic mixed gas hydrates of biogas components, their storage and transportation based on the analysis of the existing regularities of the formation of gas hydrates in time, temperature and external pressure. (Materials and methods) The article presents the accumulated results of studies of the process of obtaining artificial hydrates of natural gas and methane- containing gas mixtures at various initial static pressures and temperatures. The object of research to substantiate the parameters of artificial creation of gas hydrates is biogas obtained during anaerobic thermophilic fermentation of organic waste at an existing experimental biogas plant. Mixed feed SK-8 with a humidity of 90-92 percent was used as an organic substrate of constant composition. The composition of biogas was studied using the Optima-7 Biogas gas analyzer. (Results and discussion) The article presents a process model and a technical appearance of an installation for producing gas motor fuel from the biogas of anaerobic digestion of organic waste of the agro-industrial complex. The hydrate formation time depends on the increase in the interfacial surface and the movement of gas bubbles relative to the liquid, which can be regulated by acting on the hydrate formation zone (shock wave, electromagnetic, mechanical, chemical, temperature). (Conclusions) The research results can be used in modeling processes in two-phase media during the formation of gas hydrates and the creation of installations for their production.


NANO ◽  
2021 ◽  
pp. 2130006
Author(s):  
Jiayuan Shi ◽  
Bin Shi

The nondegradable nature and toxicity of organic liquid electrolytes reveal the design deficiency of lithium batteries in environmental protection. Biopolymers can be extracted from biomass under mild conditions, thus they are usually low cost and renewable. The unique characteristics of biopolymers such as water solubility, film-forming capability and adhesive property are of importance for lithium battery. The studies on the biopolymer materials for lithium batteries have been reviewed in this work. Although a lot of work on the biopolymer-based battery materials has been reported, it is still a challenge in the design of lithium battery with zero pollution and zero waste.


2014 ◽  
Vol 699 ◽  
pp. 221-226
Author(s):  
Nurul Hanim Razak ◽  
Md. Razali Ayob ◽  
M.A.M. Zainin ◽  
M.Z. Hilwa

Eggshells and rice husk, two types of notable agricultural waste were used as bioadsorbent to remove Methylene Blue dye (MBD) in aqueous solution. This study was to investigate the performance of these two bioadsorbents in removing MBD. The removal percentage, adsorption capacity, and porosity characterization were examined. The method applied was a physical filtration. UV-VIS Spectrophotometer was used to determine the efficiency of the bioadsorbents in MBD adsorption. The highest removal percentage at the most concentrated MBD were 51% and 98% for eggshells and rice husks respectively. Meanwhile the characterization of rice husks pore size and volume proves that higher adsorptivity towards dye compares to eggshells porosity. It was concluded that the eggshells and rice husks bioadsorbents was successful to treat industrial textile wastewater with rice husks as the most efficient bioadsorbent in removing MBD.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mulu Berhe Desta

Adsorption of heavy metals (Cr, Cd, Pb, Ni, and Cu) onto Activated Teff Straw (ATS) has been studied using batch-adsorption techniques. This study was carried out to examine the adsorption capacity of the low-cost adsorbent ATS for the removal of heavy metals from textile effluents. The influence of contact time, pH, Temperature, and adsorbent dose on the adsorption process was also studied. Results revealed that adsorption rate initially increased rapidly, and the optimal removal efficiency was reached within about 1 hour. Further increase in contact time did not show significant change in equilibrium concentration; that is, the adsorption phase reached equilibrium. The adsorption isotherms could be fitted well by the Langmuir model. The value in the present investigation was less than one, indicating that the adsorption of the metal ion onto ATS is favorable. After treatment with ATS the levels of heavy metals were observed to decrease by 88% (Ni), 82.9% (Cd), 81.5% (Cu), 74.5% (Cr), and 68.9% (Pb). Results indicate that the freely abundant, locally available, low-cost adsorbent, Teff straw can be treated as economically viable for the removal of metal ions from textile effluents.


2016 ◽  
Vol 864 ◽  
pp. 112-116
Author(s):  
Rinlee Butch M. Cervera ◽  
Emie A. Salamangkit-Mirasol

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Natalia Sienkiewicz ◽  
Midhun Dominic ◽  
Jyotishkumar Parameswaranpillai

Epoxy resins as important organic matrices, thanks to their chemical structure and the possibility of modification, have unique properties, which contribute to the fact that these materials have been used in many composite industries for many years. Epoxy resins are repeatedly used in exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance, and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents, chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant interest of scientists in the modification of resins and understanding its mechanisms, as well as in the development of these materials to obtain systems with the required properties. Most of the recent studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers, palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due to their sustainability, low cost, wide availability, and the use of waste, which is environmentally friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays. Therefore, the development and progress of “green products” based on epoxy resin and natural fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially biopolymers based on epoxy resins, which will be presented in the paper, are more useful than commercial polymers due to the low cost and improved good thermomechanical properties.


Sign in / Sign up

Export Citation Format

Share Document