york river
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 8)

H-INDEX

29
(FIVE YEARS 0)

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Thet Aung ◽  
Inayat Batish ◽  
Reza Ovissipour

This study aimed to determine the microplastic prevalence in eastern oysters (C. virginica) in three sites in the Chesapeake Bay in Virginia and optimize the digestion methods. The digestion results illustrate that the lowest recovery rate and digestion recovery were related to enzymatic, enzymatic + hydrogen peroxide (H2O2), and HCl 5% treatments, while the highest digestion recovery and recovery rate were observed in H2O2 and basic (KOH) treatments. Nitric acid digestion resulted in satisfying digestion recovery (100%), while no blue polyethylene microplastics were observed due to the poor recovery rate. In addition, nitric acid altered the color, changed the Raman spectrum intensity, and melted polypropylene (PP) and polyethylene terephthalate (PET). In order to determine the number of microplastics, 144 oysters with an approximately similar size and weight from three sites, including the James River, York River, and Eastern Shore, were evaluated. Fragments were the most abundant microplastics among the different microplastics, followed by fibers and beads, in the three sites. A significantly higher number of fragments were found in the James River, probably due to the greater amount of human activities. The number of microplastics per gram of oyster tissue was higher in the James River, with 7 MPs/g tissue, than in the York River and Eastern Shore, with 6.7 and 5.6 MPs/g tissue.


2021 ◽  
Vol 9 (3) ◽  
pp. 413-421
Author(s):  
Megan N. Gillen ◽  
Tyler C. Messerschmidt ◽  
Matthew L. Kirwan

Abstract. Sea-level rise, saltwater intrusion, and wave erosion threaten coastal marshes, but the influence of salinity on marsh erodibility remains poorly understood. We measured the shear strength of marsh soils along a salinity and biodiversity gradient in the York River estuary in Virginia to assess the direct and indirect impacts of salinity on potential marsh erodibility. We found that soil shear strength was higher in monospecific salt marshes (5–36 kPa) than in biodiverse freshwater marshes (4–8 kPa), likely driven by differences in belowground biomass. However, we also found that shear strength at the marsh edge was controlled by sediment characteristics, rather than vegetation or salinity, suggesting that inherent relationships may be obscured in more dynamic environments. Our results indicate that York River freshwater marsh soils are weaker than salt marsh soils, and suggest that salinization of these freshwater marshes may lead to simultaneous losses in biodiversity and erodibility.


Author(s):  
Lynn Killberg-Thoreson ◽  
Steven E. Baer ◽  
Rachel E. Sipler ◽  
William G. Reay ◽  
Quinn N. Roberts ◽  
...  

2020 ◽  
Vol 149 (4) ◽  
pp. 474-485
Author(s):  
Christian H. Hager ◽  
J. Carter Watterson ◽  
Jason E. Kahn

2019 ◽  
Vol 42 (5) ◽  
pp. 1265-1280
Author(s):  
Xiaolong Yao ◽  
Rachel E. Sipler ◽  
Brianna C. Stanley ◽  
Quinn N. Roberts ◽  
Marta P. Sanderson ◽  
...  

2016 ◽  
Vol 97 (7) ◽  
pp. 1495-1504 ◽  
Author(s):  
Juliana M. Harding ◽  
Michael A. Unger ◽  
E. Alex Jestel ◽  
Roger Mann

The imposition of male sexual characteristics onto the female (imposex) is present in wild populations of the non-native veined rapa whelk (Rapana venosa) in Chesapeake Bay, USA but does not appear to compromise reproductive function. Cultured whelks were used to test two hypotheses: (1) Observed imposex metrics will be similar to tributyltin (TBT) water concentrations at each of three sites; (2) Male and imposex/female whelks from the same site will have similar TBT body burdens. Cultured 2-year-old whelks were transplanted to three field sites in the York River, USA at the onset of their second reproductive season. Transplant site mean TBT water concentrations ranged from 1.4 ± 0.77 to 64.2 ± 57.8 ng l−1. Imposex incidence was 100% after 28 weeks with an observed M:F:IF ratio of 81:0:92 across all sites. Imposex stages (median vas deferens scale index = 4) and reproductive output were similar across sites. The imposex severity (IS = penis length/shell length) increased with increasing TBT concentrations. The relative penis length (RPLI) and relative penis size (RPSI) indices were positively related to site-specific TBT levels. Male whelks accumulated significantly higher TBT concentrations than female whelks at the site with the highest TBT concentration. Mean TBT concentrations in whelk egg capsules were significantly higher than concentrations in male or female whelk tissue. Egg capsule deposition provides a depuration mechanism for female whelks to reduce body burden of lipophilic TBT. Sex, season and reproductive status should be considered when using gastropod bioaccumulation to monitor TBT effects.


Sign in / Sign up

Export Citation Format

Share Document