A Validation of CloudSat and CALIPSO's Temperature, Humidity, Cloud Detection, and Cloud Base Height over the Arctic Marine Cryosphere

2013 ◽  
Vol 51 (3) ◽  
pp. 249-264 ◽  
Author(s):  
Lauren M. Candlish ◽  
Richard L. Raddatz ◽  
Geoffrey G. Gunn ◽  
Matthew G. Asplin ◽  
David G. Barber
2021 ◽  
Vol 13 (14) ◽  
pp. 2808
Author(s):  
Acharya Asutosh ◽  
Sourav Chatterjee ◽  
M.P. Subeesh ◽  
Athulya Radhakrishnan ◽  
Nuncio Murukesh

Clouds play a significant role in regulating the Arctic climate and water cycle due to their impacts on radiative balance through various complex feedback processes. However, there are still large discrepancies in satellite and numerical model-derived cloud datasets over the Arctic region due to a lack of observations. Here, we report observations of cloud base height (CBH) characteristics measured using a Vaisala CL51 ceilometer at Ny-Ålesund, Svalbard. The study highlights the monthly and seasonal CBH characteristics at the location. It is found that almost 40% of the lowest CBHs fall within a height range of 0.5–1 km. The second and third cloud bases that could be detected by the ceilometer are mostly concentrated below 3 km during summer but possess more vertical spread during the winter season. Thin and low-level clouds appear to be dominant during the summer. Low-level clouds are found to be dominant and observed in 76% of cases. The mid and high-level clouds occur in ~16% and ~7% of cases, respectively. Further, micro rain radar (MRR2) observed enhanced precipitation and snowfall events during the winter and spring which are found to be associated with the lowest CBHs within 2 km from the ground. The frontal process associated with synoptic-scale meteorological conditions explains the variabilities in CBH and precipitation at the observation site when compared for two contrasting winter precipitation events. The findings of the study could be useful for model evaluation of cloud precipitation relationships and satellite data validation in the Arctic environment.


2018 ◽  
Author(s):  
Marion Maturilli ◽  
Kerstin Ebell

Abstract. Clouds are a key factor for the Arctic Amplification of global warming, but their actual appearance and distribution is still afflicted with large uncertainty. On the Arctic wide scale, large discrepancies are found between the various reanalyses and satellite products, respectively. Although ground-based observations by remote sensing are limited to point measurements, they have the advantage to obtain extended time series of vertically resolved cloud properties. Here, we present a 25-year data record of cloud base height measured by ceilometer at the Arctic site Ny-Ålesund, Svalbard. Linked to cyclonic activity, the cloud base height provides essential information for the interpretation of the surface radiation balance and contributes to the understanding meteorological processes. Furthermore, it is a useful auxiliary component for the analysis of advanced technologies that provide insight to cloud microphysical properties, like the cloud radar. The long-term time series also allows deriving an annual cycle of the cloud occurrence frequency, revealing the more frequent cloud cover in summer and the lowest cloud cover amount in April. However, as the use of different ceilometer instruments over the years potentially imposed inhomogeneities to the data record, any long-term trend analysis should be avoided. The Ny-Ålesund cloud base height data from August 1992 to July 2017 are provided in high temporal resolution of 5 minutes (1 minute) before (after) July 1998, respectively, at the PANGAEA repository (https://doi.org/10.1594/PANGAEA.880300).


2020 ◽  
Vol 20 (1) ◽  
pp. 39-45
Author(s):  
Findy Renggono

IntisariInformasi mengenai tinggi dasar awan penting bagi penelitian atmosfer dan juga sebagai masukan bagi pemodelan cuaca. Pada kegiatan modifikasi cuaca, informasi ini juga sangat penting dalam menentukan awan yang akan disemai. Dalam tulisan ini, pengukuran tinggi dasar awan dilakukan dengan menggunakan sensor infra merah yang terpasang pada radiometer. Sensor infra merah ini akan mengukur suhu dasar awan yang kemudian dapat diketahui ketinggiannya dengan melihat temperatur lapse rate. Hasil pengukuran dibandingkan dengan hasil pengamatan awan oleh micro rain radar yang terletak di lokasi yang sama. Hasil pengukuran dari kedua peralatan ini menunjukkan kesesuaian antara kemunculan awan pada micro rain radar yang ditunjukkan dengan struktur vertikal awan dengan hasil pengamatan dengan IRT dari radiometer. Pengamatan selama puncak musim hujan di Jabodetabek (Januari – Maret 2019) menunjukan adanya pola harian yang cukup jelas. AbstractInformation on cloud properties is important for atmospheric research and as well as for weather modeling. In weather modification, this information is very important for cloud seeding strategy. The observation of cloud base height is carried out using infrared sensors mounted on a radiometer. These infrared thermometer sensors are capable of detecting the cloud base temperature, the cloud base height is obtained by looking at the temperature lapse rate retrieved from radiometer observation. The results were compared with the cloud observation by micro rain radar which is located at the same location. The comparison results of these two instruments show that the consistency of cloud detection was good. Based on the observation during the peak of the rainy season in Jabodetabek (January-March 2019), it is shown a fairly clear daily pattern


2018 ◽  
Vol 35 (4) ◽  
pp. 689-704 ◽  
Author(s):  
Zhe Wang ◽  
Zhenhui Wang ◽  
Xiaozhong Cao ◽  
Jiajia Mao ◽  
Fa Tao ◽  
...  

AbstractAn improved algorithm to calculate cloud-base height (CBH) from infrared temperature sensor (IRT) observations that accompany a microwave radiometer was described, the results of which were compared with the CBHs derived from ground-based millimeter-wavelength cloud radar reflectivity data. The results were superior to the original CBH product of IRT and closer to the cloud radar data, which could be used as a reference for comparative analysis and synergistic cloud measurements. Based on the data obtained by these two kinds of instruments for the same period (January–December 2016) from the Beijing Nanjiao Weather Observatory, the results showed that the consistency of cloud detection was good and that the consistency rate between the two datasets was 81.6%. The correlation coefficient between the two CBH datasets reached 0.62, based on 73 545 samples, and the average difference was 0.1 km. Higher correlations were obtained for thicker clouds with a larger echo intensity. A low-level thin cloud cannot be regarded as a blackbody because of its high transmittance, which results in higher CBHs derived from IRT data. Because of a smaller cloud radiation effect for high-level thin cloud above 8 km, the contribution of the atmospheric downward radiation below the cloud base to the IRT cannot be ignored, as it results in lower CBHs derived from IRT data. Owing to the seasonal variation of atmospheric downward radiation reaching the IRT, the difference between the two CBHs also has a seasonal variation. The IRT CBHs are generally higher (lower) than the cloud radar CBHs in winter (summer).


2018 ◽  
Vol 10 (3) ◽  
pp. 1451-1456 ◽  
Author(s):  
Marion Maturilli ◽  
Kerstin Ebell

Abstract. Clouds are a key factor for the Arctic amplification of global warming, but their actual appearance and distribution are still afflicted by large uncertainty. On the Arctic-wide scale, large discrepancies are found between the various reanalyses and satellite products, respectively. Although ground-based observations by remote sensing are limited to point measurements, they have the advantage of obtaining extended time series of vertically resolved cloud properties. Here, we present a 25-year data record of cloud base height measured by ceilometer at the Ny-Ålesund, Svalbard, Arctic site. We explain the composition of the three sub-periods with different instrumentation contributing to the data set, and show examples of potential application areas. Linked to cyclonic activity, the cloud base height provides essential information for the interpretation of the surface radiation balance and contributes to the understanding of meteorological processes. Furthermore, it is a useful auxiliary component for the analysis of advanced technologies that provide insight into cloud microphysical properties, like the cloud radar. The long-term time series also allows derivation of an annual cycle of the cloud occurrence frequency, revealing the more frequent cloud cover in summer and the lowest cloud cover amount in April. However, as the use of different ceilometer instruments over the years potentially imposed inhomogeneities onto the data record, any long-term trend analysis should be avoided. The Ny-Ålesund cloud base height data from August 1992 to July 2017 are provided in a high temporal resolution of 5 min (1 min) before (after) July 1998, respectively, at the PANGAEA repository (https://doi.org/10.1594/PANGAEA.880300).


2018 ◽  
Vol 76 (1) ◽  
pp. 87-94 ◽  
Author(s):  
PW Miller ◽  
TL Mote ◽  
CA Ramseyer ◽  
AE Van Beusekom ◽  
M Scholl ◽  
...  

2021 ◽  
Author(s):  
Bjorn Stevens ◽  
Ilya Serikov ◽  
Anna Lea Albright ◽  
Sandrine Bony ◽  
Geet George ◽  
...  

<p>Cloud free skies are rare in the trades.  We analyze conditions in which cloud-free conditions prevail.  For this purpose Raman water vapor measurements from the Barbados Cloud Observatory, complemented by ship-based measurements during EUREC4A are used to explore water vapor variability in the marine boundary layer.   We explore the consistency of the inferred cloud base height with estimates of temperature and water vapor from the lidar signal, and examine the co-variability of these quantities.  After having established the properties of these measurements, we seek to use them as well as others, to explain in what ways periods of cloud-free conditions are maintained, investigating the hypothesis that only when the wind stills is it simply sunny.</p>


Sign in / Sign up

Export Citation Format

Share Document