scholarly journals Mapping quantitative trait loci associated with stripe rust resistance from the Canadian wheat cultivar ‘AAC Innova’

Author(s):  
Momna Farzand ◽  
Raman Dhariwal ◽  
Colin W. Hiebert ◽  
Dean Spaner ◽  
Harpinder S. Randhawa
2013 ◽  
Vol 126 (10) ◽  
pp. 2427-2449 ◽  
Author(s):  
G. M. Rosewarne ◽  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
C. X. Lan ◽  
...  

2012 ◽  
Vol 63 (6) ◽  
pp. 539 ◽  
Author(s):  
M. A. Asad ◽  
B. Bai ◽  
C. X. Lan ◽  
J. Yan ◽  
X. C. Xia ◽  
...  

Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a fungal disease that causes significant yield losses in many wheat-growing regions of the world. Previously, five quantitative trait loci (QTLs) for adult-plant resistance (APR) to stripe rust resistance were identified in Italian wheat cultivar Libellula. The objectives of this study were to map QTLs for APR to powdery mildew in 244 F2 : 3 lines of Libellula/Huixianhong, to analyse the stability of detected QTLs across environments, and to assess the association of these QTLs with stripe rust resistance. Powdery mildew response was evaluated for 2 years in Beijing and for 1 year in Anyang. The correlation between averaged maximum disease severity (MDS) and averaged area under disease progress curve (AUDPC) over 2 years in Beijing was 0.98, and heritabilities of MDS and AUDPC were 0.65 and 0.81, respectively, based on the mean values averaged across environments. SSR markers were used to screen the parents and mapping population. Five QTLs were identified by inclusive composite interval mapping, designated as QPm.caas-2DS, QPm.caas-4BL.1, QPm.caas-6BL.1, QPm.caas-6BL.2, and QPm.caas-7DS. Three QTLs (QPm.caas-2DS and QPm.caas-6BL.1, and QPm.caas-6BL.2) seem to be new resistance loci for powdery mildew. QTLs QPm.caas-2DS and QPm.caas-4BL.1 were identified at the same position as previously mapped QTLs for stripe rust resistance in Libellula. The QTL QPm.caas-7DS, derived from Libellula, coincided with the slow rusting and slow mildewing locus Lr34/Yr18/Pm38. These results and the identified markers could be useful for wheat breeders aiming for durable resistance to both powdery mildew and stripe rust.


2012 ◽  
Vol 31 (2) ◽  
pp. 405-418 ◽  
Author(s):  
A. Singh ◽  
M. P. Pandey ◽  
A. K. Singh ◽  
R. E. Knox ◽  
K. Ammar ◽  
...  

2020 ◽  
Vol 110 (5) ◽  
pp. 1074-1081 ◽  
Author(s):  
Takele Weldu Gebrewahid ◽  
Yue Zhou ◽  
Peipei Zhang ◽  
Yong Ren ◽  
Pu Gao ◽  
...  

Stripe rust and leaf rust cause wheat yield losses of up to 70% worldwide. The employment of resistant cultivars is the major method to reduce losses from these diseases. The objective of this study was to detect quantitative trait loci (QTL) for stripe rust and leaf rust resistance in 150 F6 recombinant inbred lines (RIL) derived from a cross between Mianyang351-15 and Zhengzhou 5389. Both parents and the RIL population were genotyped with the Wheat55K single nucleotide polymorphism (SNP) array and simple sequence repeat markers, and phenotyped for stripe rust severity at Mianyang in Sichuan Province and Baoding in Hebei Province, and for leaf rust severity at Zhoukou in Henan Province and at Baoding in 2014 to 2017 cropping seasons. Seven and four QTL all contributed from Mianyang351-15 were identified for resistance to stripe rust and leaf rust, respectively. Four of these QTL on chromosomes 1BL, 2AS, 2DS, and 7BL conferred resistance to both stripe rust and leaf rust. The QTL on 1BL, 2AS, and 7BL were identified as Lr46/Yr29, Lr37/Yr17, and Lr68, respectively. QYr.hbau-2DS/QLr.hbau-2DS was detected at similar positions to previously reported loci. QYr.hbau-1DL, QYr.hbau-3AS, and QYr.hbau-3DL are likely to be new. Combined effects of QTL in the RIL population indicated RIL combining all QTL had the highest resistance level compared with those of lower numbers or no QTL. These QTL, with their closely linked SNP markers, are applicable for marker-assisted breeding and candidate gene discovery.


2020 ◽  
Vol 21 (2) ◽  
pp. 478 ◽  
Author(s):  
Yan Liu ◽  
Yanmin Qie ◽  
Xing Li ◽  
Meinan Wang ◽  
Xianming Chen

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Genetic resistance is the best strategy for control of the disease. Spring wheat landrace PI 181410 has shown high level resistance to stripe rust. The present study characterized the landrace to have both race-specific all-stage resistance and nonrace-specific high-temperature adult-plant (HTAP) resistance. To map quantitative trait loci (QTL) for the resistance in PI 181410, it was crossed with Avocet S (AvS), from which a recombinant inbred line population was developed. The F5–F8 populations were consecutively phenotyped for stripe rust response in multiple field environments under natural Pst infection, and the F7 population was phenotyped in seedlings at low temperature and in adult-plant stage with selected Pst races in the greenhouse. The F7 population was genotyped using the 90K wheat SNP chip. Three QTL, QYrPI181410.wgp-4AS, QYrPI181410.wgp-4BL, and QYrPI181410.wgp-5BL.1, from PI 181410 for all-stage resistance, were mapped on chromosome arms 4AS, 4BL, and 5BL, respectively. Four QTL, QYrPI181410.wgp-1BL, QYrPI181410.wgp-4BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2, were identified from PI 181410 for HTAP resistance and mapped to 1BL, 4BL, 5AS, and 5BL, respectively. Two QTL with minor effects on stripe rust response were identified from AvS and mapped to 2BS and 2BL. Four of the QTL from PI 181410 and one from AvS were potentially new. As the 4BL QTL was most effective and likely a new gene for stripe rust resistance, three kompetitive allele specific PCR (KASP) markers were developed for incorporating this gene into new wheat cultivars.


2019 ◽  
Vol 109 (7) ◽  
pp. 1226-1235 ◽  
Author(s):  
Lu Liu ◽  
Meinan Wang ◽  
Junyan Feng ◽  
Deven R. See ◽  
Xianming Chen

Winter wheat cultivar Eltan has been one of the most widely grown cultivars in the U.S. Pacific Northwest. It has shown variable levels of resistance to stripe rust in different years since it was released in 1990. To map all currently effective and defeated resistance genes in Eltan and understand the factors causing the resistance changes, 112 F2:5 recombinant inbred lines (RILs) were developed from a cross of Eltan with cultivar Avocet S. The RILs were evaluated in fields of Pullman, Washington in 2015, 2016, 2017, and 2018 and Mount Vernon, Washington in 2016 and 2017 under natural infections; they were also evaluated in the greenhouse with races PSTv-4 and PSTv-40 of Puccinia striiformis f. sp. tritici. The RILs were genotyped with the 90K Illumina iSelect wheat single-nucleotide polymorphism chip. A total of five quantitative trait loci (QTLs) were identified in Eltan. Two major QTLs on chromosome arms 2BS and 4AL were detected in the greenhouse tests, explaining up to 28.0 and 42.0% of phenotypic variation, respectively. The two race-specific QTLs were also detected in some field experiments but with reduced effects. A minor QTL on 5BS was detected in the greenhouse and field tests, explaining 10.0 to 14.8% of the phenotypic variation. The other two minor QTLs were mapped on 6AS and 7BL and detected only in field experiments, explaining up to 20.5 and 13.5% of phenotypic variation, respectively. All stripe rust samples collected in the experimental fields in 2015 and 2016 were identified as P. striiformis f. sp. tritici races virulent on seedlings of Eltan. The resistance reduction of Eltan was caused by changes of the P. striiformis f. sp. tritici population from avirulent to virulent, overcoming the race-specific all-stage resistance in Eltan.


2003 ◽  
Vol 93 (7) ◽  
pp. 881-890 ◽  
Author(s):  
K. Suenaga ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William

Leaf rust and stripe rust, caused by Puccinia triticina and P. striiformis, respectively, are important diseases of wheat in many countries. In this study we sought to identify molecular markers for adult plant resistance genes that could aid in incorporating such durable resistance into wheat. We used a doubled haploid population from a Japanese cv. Fukuho-komugi × Israeli wheat Oligoculm cross that had segregated for resistance to leaf rust and stripe rust in field trials. Joint and/or single-year analyses by composite interval mapping identified two quantitative trait loci (QTL) that reduced leaf rust severity and up to 11 and 7 QTLs that might have influenced stripe rust severity and infection type, respectively. Four common QTLs reduced stripe rust severity and infection type. Except for a QTL on chromosome 7DS, no common QTL for leaf rust and stripe rust was detected. QTL-7DS derived from ‘Fukuho-komugi’ had the largest effect on both leaf rust and stripe rust severities, possibly due to linked resistance genes Lr34/Yr18. The microsatellite locus Xgwm295.1, located almost at the peak of the likelihood ratio contours for both leaf and stripe rust severity, was closest to Lr34/Yr18. QTLs located on 1BL for leaf rust severity and 3BS for stripe rust infection type were derived from ‘Oligoculm’ and considered to be due to genes Lr46 and Yr30, respectively. Most of the remaining QTLs for stripe rust severity or infection type had smaller effects. Our results indicate there is significant diversity for genes that have minor effects on stripe rust resistance, and that successful detection of these QTLs by molecular markers should be helpful both for characterizing wheat genotypes effectively and combining such resistance genes.


Sign in / Sign up

Export Citation Format

Share Document