The effects of spacing protein intake on nitrogen balance and plasma amino acids in a child with propionic acidemia.

1982 ◽  
Vol 1 (3) ◽  
pp. 305-308 ◽  
Author(s):  
P M Queen ◽  
P B Acosta ◽  
P M Fernhoff
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Sinziana Stanescu ◽  
Amaya Belanger-Quintana ◽  
Borja Manuel Fernandez-Felix ◽  
Francisco Arrieta ◽  
Victor Quintero ◽  
...  

Abstract Background Propionic acidemia (PA), an inborn error of metabolism, is caused by a deficiency in propionyl-CoA carboxylase. Patients have to follow a diet restricted in the propiogenic amino acids isoleucine (Ile), valine (Val), methionine (Met) and threonine (Thr); proper adherence can prevent and treat acute decompensation and increase life expectancy. However, chronic complications occur in several organs even though metabolic control may be largely maintained. Bone marrow aplasia and anemia are among the more common. Materials and methods In this retrospective study, data for patients with PA being monitored at the Hospital Ramón y Cajal (Madrid, Spain) (n = 10) in the past 10 years were examined to statistically detect relationships between persistent severe anemia outside of metabolic decompensation episodes and dietary practices such as natural protein intake and medical food consumption (special mixture of precursor-free amino acids) along with plasma levels of branched-chain amino acids (BCAA). High ferritin levels were deemed to indicate that a patient had received repeated transfusions for persistent anemia since data on hemoglobin levels at the moment of transfusion were not always passed on by the attending centers. Results Three patients had severe, persistent anemia that required repeated blood transfusions. Higher medical food consumption and plasma Leu levels were associated with iron overload. Notably, natural protein intake and plasma Val were negatively correlated with ferritin levels. We also observed an inverse relationship between plasma Val/Leu and Ile/Leu ratios and ferritin. Conclusion The present results suggest that severe anemia in patients with PA might be associated with low natural protein intake and BCAA imbalance.


1974 ◽  
Vol 8 (4) ◽  
pp. 386-386 ◽  
Author(s):  
Joseph O Sherman ◽  
Carole-Ann Hamly ◽  
Avedis K Khachadurian ◽  
H L Nadler

2002 ◽  
Vol 25 (4) ◽  
pp. 261-268 ◽  
Author(s):  
R. Bellomo ◽  
H. K. Tan ◽  
S. Bhonagiri ◽  
I. Gopal ◽  
J. Seacombe ◽  
...  

Aims To study the effect of combined continuous veno-venous hemodiafiltration (CVVHDF) and high (2.5 g/kg/day) parenteral amino acid supplementation on nitrogen balance, amino acid losses and azotemic control in a cohort of patients with severe acute renal failure (ARF). Methods We administered 2.5 grams/kg/day of amino acids intravenously to seven critically ill patients with ARF. We obtained paired blood and ultrafiltrate (UF) samples (n=20) and calculated amino acid clearances and losses, nitrogen balance, protein catabolic rate and total nitrogen losses. Results The median total serum amino acid concentration was high at 5.2 mmol/L with particularly high concentrations of ornithine, lysine, and phenylalanine, but a low level of histidine. The median overall amino acid clearance was 18.6 ml/min (range: 12 to 29 ml/min). UF losses as percentage of administered dose were high for tyrosine (53.6 %) but low for methionine (3.0 %) and arginine (2.3 %). A positive nitrogen balance was achieved in 7 (35%) of the 20 study days with an overall median nitrogen balance of -1.8 g/day. Urea levels were maintained at a median of 26.6 mmol/L. Conclusions High protein intake increases the serum concentrations of most amino acids. Such protein supplementation, when coupled with CVVHDF, achieves a slightly negative overall nitrogen balance in extremely catabolic patients while still allowing adequate azotemic control.


1983 ◽  
Vol 197 (3) ◽  
pp. 288-293 ◽  
Author(s):  
ANN MCGHEE ◽  
J. MICHAEL HENDERSON ◽  
WILLIAM J. MILLIKAN ◽  
JULIE C. BLEIER ◽  
ROBERT VOGEL ◽  
...  

1945 ◽  
Vol 82 (1) ◽  
pp. 65-76 ◽  
Author(s):  
S. C. Madden ◽  
W. A. Clay

Adult dogs were given a proteinless diet plus casein, 80 calories/kilo, 0.4 gm. nitrogen/kilo/day. Sterile controlled inflammation was produced by subcutaneous injection of turpentine. The reaction is characterized by local swelling, induration, and abscess formation, terminated by rupture or incision after 3 to 5 days and by general reactions of malaise, fever, leucocytosis, and increased urinary nitrogen. For 3 to 6 days after turpentine the nitrogen intake was provided in seven experiments by amino acids given parenterally (a solution of the ten essential amino acids (Rose) plus glycine). A normal dog with a normal protein intake showed a negative nitrogen balance after turpentine—urinary nitrogen doubled even as in inflammation during fasting. A protein-depleted dog (low protein reserves produced by very low protein intake) given a normal protein intake after turpentine maintained nitrogen balance—urinary nitrogen rose only slightly. With a high (doubled) protein intake the depleted dog showed strongly positive balance. Normal dogs with high (doubled) protein intakes react to turpentine with doubled urinary nitrogen outputs on individual days and therefore are maintained in approximate nitrogen balance and weight balance. This end may be achieved equally well or better by oral feeding, when such is possible and absorption unimpaired. The increased nitrogen excretion after injury is again shown directly related to the state of body protein reserves. Increased catabolism not inhibition of anabolism best explains the excess urinary nitrogen. Protection during injury of valuable protein reserves appears possible through an adequate intake of protein nitrogen.


2020 ◽  
Author(s):  
Kulnipa Kittisakmontri ◽  
Julie Lanigan ◽  
Jonathan C K Wells ◽  
Mary Fewtrell

BACKGROUND Protein is an essential macronutrient with an important role during complementary feeding. Low protein intake contributes to undernutrition while high intake, especially from animal sources, may increase obesity risk. However, the influences of different protein sources (dairy, meat, and plants) on growth, and underlying mechanisms for these effects, are poorly understood. Animal-sourced foods provide both high-quality protein and iron and are recommended to improve iron status. However, it is unclear whether current dietary recommendations are adequate to support healthy growth and optimize iron status. These issues are of particular concern in countries facing the double burden of malnutrition, the coexistence of all forms of malnutrition. More evidence is needed to develop appropriate recommendations for these countries. OBJECTIVE This study will investigate associations between protein intake during complementary feeding and growth, body composition, and iron status of infants in Thailand, a country facing the double burden of malnutrition. The study will also explore how different protein sources influence growth via the growth hormone—insulin-like growth factor I (IGF-1) axis and plasma amino acids. METHODS A multicenter cohort study will be conducted in Chiang Mai, Thailand, in 150 healthy term infants aged 4-6 months with birth weight ≥2500 g. Demographic data, dietary intake, and anthropometry will be collected at 6, 9, and 12 months. Dietary intake will be assessed using 24-hour dietary recalls, 3-day food records, and food frequency questionnaires. Blood samples for iron status, growth hormone, IGF-1, insulin-like growth factor-binding protein III (IGFBP-3), and plasma amino acids and urine samples for body composition analysis using stable isotope dilution will be obtained at 12 months. RESULTS The recruitment of study participants and data collection was undertaken from June 2018 to May 2019. Data and laboratory analyses are ongoing and are expected to be completed by December 2020. A total of 150 participants were enrolled, and 146 completed the study. We hypothesized that protein intake from animal-sourced foods in recommended quantities could support normal weight and length gain and lower the risk of undernutrition associated with similar amounts of plant-based protein. However, higher protein intake, especially from milk protein, may be linked to increased body fat via plasma amino acids and the growth hormone-IGF axis. CONCLUSIONS The results of this study will provide data on current complementary feeding practices, focusing on protein and iron intake in Thai infants. This information, combined with data on associations with infant growth and iron status, will help inform complementary feeding recommendations for this population and may be found relevant to other settings experiencing the double burden of malnutrition. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/18112


Sign in / Sign up

Export Citation Format

Share Document