The effect of structural parameters and positive charge distance on the interaction free energy of antimicrobial peptides with membrane surface

2014 ◽  
Vol 33 (3) ◽  
pp. 502-512 ◽  
Author(s):  
Mohammad Mehdi Ghahremanpour ◽  
Soroush Sardari
2009 ◽  
Vol 35 (10-11) ◽  
pp. 986-997 ◽  
Author(s):  
Abdallah Sayyed-Ahmad ◽  
Himanshu Khandelia ◽  
Yiannis N. Kaznessis

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 79
Author(s):  
Miroslav Kukučka ◽  
Nikoleta Kukučka Stojanović

Commercial nanofiltration membranes of different molecular weight cut-offs were tested on a pilot plant for the exploration of permeation nature of Ca, Mg, Mn, Fe, Na and ammonium ions. Correlation of transmembrane pressure and rejection quotient versus volumetric flux efficiency on nanofiltration membrane rejection and permeability behavior toward hydrated divalent and monovalent ions separation from the natural groundwater was observed. Membrane ion rejection affinity (MIRA) dimension was established as normalized TMP with regard to permeate solute moiety representing pressure value necessary for solute rejection change of 1%. Ion rejection coefficient (IRC) was introduced to evaluate the membrane rejection capability, and to indicate the prevailed nanofiltration partitioning mechanism near the membrane surface. Positive values of the IRC indicated satisfactory rejection efficiency of the membrane process and its negative values ensigned very low rejection affinity and high permeability of the membranes for the individual solutes. The TMP quotient and the efficiency of rejection for individual cations showed upward and downward trends along with flux utilization increase. Nanofiltration process was observed as an equilibrium. The higher the Gibbs free energy was, cation rejection was more exothermic and valuably enlarged. Low Gibbs free energy values circumferentially closer to endothermic zone indicated expressed ions permeation.


2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Yan Xing Shen ◽  
Jen Fin Lin

This study presents a novel approach for analyzing the interaction between two parallel surfaces grafted with polymer brushes in a good solvent. In the proposed approach, molecular dynamics simulations are performed to establish the mean brush height and the standard deviation of the brush height distribution for a given value of the surface separation. The corresponding probability density function (PDF) of the brush height is then determined and a statistical technique is applied to compute the corresponding interaction free energy per unit area of the grafted substrates. Finally, the Derjaguin approximation is employed to determine the corresponding value of the interaction force between the two surfaces. At relatively high surface grafting density as well as under low to moderate compressions of these two parallel plates, the interdigitation effect of the brushes is quite weak and is not considered in the present study. The results obtained for the interaction free energy and interaction force are compared with those derived using the Alexander and de Gennes (AdG) model [1977, “Adsorption of Chain Molecules With a Polar Head. A Scaling Approach,” J. Phys. (Paris), 38, pp. 983–989, 1985, “Films of Polymer-Solutions,” C. R. Acad. Sci., 300, pp. 839–843] and the Milner, Witten, and Cates (MWC) model [1988, “Theory of the Grafted Polymer Brush,” Macromolecules, 21, pp. 2610–2619], respectively. The value of the normalized interaction free energy computed using the present method is higher than that obtained from the AdG and MWC models at larger surface separations. However, the three sets of results are in good agreement particularly at smaller values of the surface separation. In addition, the results obtained by the current method for the interaction force are found to be in better agreement with the experimental data than those obtained using the AdG or MWC models. The enhanced performance of the proposed method is attributed primarily to the use of an adaptive non-Gaussian PDF of the brush height to model the effects of fluctuations in the brush conformation at different distances from the grafting plane.


2010 ◽  
Vol 82 (3) ◽  
Author(s):  
Francesco Intravaia ◽  
Simen Å. Ellingsen ◽  
Carsten Henkel

Sign in / Sign up

Export Citation Format

Share Document