Effect of Fluctuations in the Brush Conformation on the Interaction Between Polymer Brushes in a Good Solvent

2008 ◽  
Vol 75 (5) ◽  
Author(s):  
Yan Xing Shen ◽  
Jen Fin Lin

This study presents a novel approach for analyzing the interaction between two parallel surfaces grafted with polymer brushes in a good solvent. In the proposed approach, molecular dynamics simulations are performed to establish the mean brush height and the standard deviation of the brush height distribution for a given value of the surface separation. The corresponding probability density function (PDF) of the brush height is then determined and a statistical technique is applied to compute the corresponding interaction free energy per unit area of the grafted substrates. Finally, the Derjaguin approximation is employed to determine the corresponding value of the interaction force between the two surfaces. At relatively high surface grafting density as well as under low to moderate compressions of these two parallel plates, the interdigitation effect of the brushes is quite weak and is not considered in the present study. The results obtained for the interaction free energy and interaction force are compared with those derived using the Alexander and de Gennes (AdG) model [1977, “Adsorption of Chain Molecules With a Polar Head. A Scaling Approach,” J. Phys. (Paris), 38, pp. 983–989, 1985, “Films of Polymer-Solutions,” C. R. Acad. Sci., 300, pp. 839–843] and the Milner, Witten, and Cates (MWC) model [1988, “Theory of the Grafted Polymer Brush,” Macromolecules, 21, pp. 2610–2619], respectively. The value of the normalized interaction free energy computed using the present method is higher than that obtained from the AdG and MWC models at larger surface separations. However, the three sets of results are in good agreement particularly at smaller values of the surface separation. In addition, the results obtained by the current method for the interaction force are found to be in better agreement with the experimental data than those obtained using the AdG or MWC models. The enhanced performance of the proposed method is attributed primarily to the use of an adaptive non-Gaussian PDF of the brush height to model the effects of fluctuations in the brush conformation at different distances from the grafting plane.

Author(s):  
Kerry O-Connell ◽  
John R Monnier ◽  
John Regalbuto

In an effort to stabilize gold nanoparticles which sinter rapidly in a highly corrosive chemical environment, the hydrochlorination of acetylene, bimetallic Ru@Au and Pt@Au core-shell catalysts were prepared by anchoring...


Polymer-stabilized colloid particles are modelled theoretically by plane surfaces on to which polymer chains are adsorbed by one end only. Interactions between segments of the polymer are treated as an excluded volume effect. It is shown that for high surface densities the polymer distribution function exactly satisfies a one dimensional equation which is solved numerically for two values of excluded volume to give the polymer segment density distributions and the free energy of interaction for various separations of the plane surfaces. It is found that a positive value of excluded volume greatly increases the repulsive free energy compared with that for chains with zero excluded volume, particularly at large separation distances of the surfaces. Excluded volume effects must therefore play an important part in the stabilization of colloids by adsorbed polymer.


2002 ◽  
Vol 124 (4) ◽  
pp. 829-833 ◽  
Author(s):  
Yeau-Ren Jeng ◽  
Zhi-Way Lin ◽  
Shiuh-Hwa Shyu

A method was developed to measure the wear of general engineering surfaces based on the roughness parameters of the worn surfaces. This method does not require any information of the initial surface. The surface height distribution is described using Johnson translatory system where the loss of surface height is attributed to wear. Experiments of engine running in were conducted to validate the method. The results show that the current method can determine wear comparable to surface roughness. The current approach simplifies the profilometrical wear measurement and extends such a measurement to non-Gaussian surfaces.


Soft Matter ◽  
2017 ◽  
Vol 13 (12) ◽  
pp. 2362-2370 ◽  
Author(s):  
Ignacio Gleria ◽  
Esteban Mocskos ◽  
Mario Tagliazucchi

Sign in / Sign up

Export Citation Format

Share Document