net positive charge
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 1192 (1) ◽  
pp. 012013
Author(s):  
L Sukmarini

Abstract Marine-derived antimicrobial compounds possess chemical diversity varying from peptides, fatty acids to terpenes, alkaloids, and polyketides. These compounds, especially of peptide origin called antimicrobial peptides (AMPs), are present in the majority of marine organisms, including microbes (bacteria and fungi), invertebrates (molluscs, echinoderms, and sponges), vertebrates (fish and mammals), and plants (marine algae). They are defined by small molecular weight (less than 10 kDa), a net positive charge, and amphipathic structures. Moreover, due to their profound in vitro antimicrobial and cytotoxic activities and a low risk for resistance development, naturally occurring marine-derived AMPs (mAMPs) have been used as drug design templates for a large variety of semi-synthetic or synthetic AMPs, some of which have reached clinical trials. This mini-review aims to discuss AMPs from marine sources, mainly emphasizing the engineering of these peptides with improved pharmacological properties to develop drug candidates. Some selected recent examples of these engineered mAMPs as anti-infective drug leads are herein highlighted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rohana P. Dassanayake ◽  
Briony M. Atkinson ◽  
Adam S. Mullis ◽  
Shollie M. Falkenberg ◽  
Eric M. Nicholson ◽  
...  

AbstractMultidrug-resistant (MDR) Salmonella is a threat to public health. Non-antibiotic therapies could serve as important countermeasures to control MDR Salmonella outbreaks. In this study, antimicrobial activity of cationic α-helical bovine NK-lysin-derived antimicrobial peptides was evaluated against MDR Salmonella outbreak isolates. NK2A and NK2B strongly inhibited MDR Salmonella growth while NK1 and NK2C showed minimum-to-no growth inhibition. Scrambled-NK2A, which is devoid of α-helicity but has the same net positive charge as NK2A, also failed to inhibit bacterial growth. Incubation of negatively charged MDR Salmonella with NK2A showed increased Zeta potential, indicating bacterial-peptide electrostatic attraction. Confocal and transmission electron microscopy studies revealed NK2A-mediated damage to MDR Salmonella membranes. LPS inhibited NK2A-mediated growth suppression in a dose-dependent response, suggesting irreversible NK2A-LPS binding. LPS-NK2A binding and bacterial membrane disruption was also confirmed via electron microscopy using gold nanoparticle-NK2A conjugates. Finally, NK2A-loaded polyanhydride nanoparticles showed sustained peptide delivery and anti-bacterial activity. Together, these findings indicate that NK2A α-helicity and positive charge are prerequisites for antimicrobial activity and that MDR Salmonella killing is mediated by direct interaction of NK2A with LPS and the inner membrane, leading to bacterial membrane permeabilization. With further optimization using nano-carriers, NK2A has the potential to become a potent anti-MDR Salmonella agent.


2021 ◽  
Vol 22 (18) ◽  
pp. 10011
Author(s):  
Lucia Falcigno ◽  
Gabriella D’Auria ◽  
Gianna Palmieri ◽  
Marta Gogliettino ◽  
Bruna Agrillo ◽  
...  

Antimicrobial peptides (AMPs) represent a skilled class of new antibiotics, due to their broad range of activity, rapid killing, and low bacterial resistance. Many efforts have been made to discover AMPs with improved performances, i.e., high antimicrobial activity, low cytotoxicity against human cells, stability against proteolytic degradation, and low costs of production. In the design of new AMPs, several physicochemical features, such as hydrophobicity, net positive charge, propensity to assume amphipathic conformation, and self-assembling properties, must be considered. Starting from the sequence of the dodecapeptide 1018-K6, we designed a new 10-aminoacid peptide, namely RiLK1, which is highly effective against both fungi and Gram-positive and -negative bacteria at low micromolar concentrations without causing human cell cytotoxicity. In order to find the structural reasons explaining the improved performance of RiLK1 versus 1018-K6, a comparative analysis of the two peptides was carried out with a combination of CD, NMR, and fluorescence spectroscopies, while their self-assembling properties were analyzed by optical and atomic force microscopies. Interestingly, the different spectroscopic and microscopic profiles exhibited by the two peptides, including the propensity of RiLK1 to adopt helix arrangements in contrast to 1018-K6, could explain the improved bactericidal, antifungal, and anti-biofilm activities shown by the new peptide against a panel of food pathogens.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1305
Author(s):  
Ye Wang ◽  
James D. Morton ◽  
Alaa EL-Din A. Bekhit ◽  
Alan Carne ◽  
Susan L. Mason

Although the bioactivities of bovine lactoferrin have been extensively investigated, little is known about deer milk lactoferrin bioactivity and its amino acid sequence. This research investigated the amino acid sequence of deer lactoferrin and the antimicrobial activities of two lactoferrin-encrypted peptides; lactoferricin (Lfcin) and lactoferrampin (Lfampin). Deer lactoferrin was found to have a molecular weight of 77.1 kDa and an isoelectric point of 7.99, which are similar to that of bovine lactoferrin, 78 kDa and pI 7.9. Deer lactoferrin contains 707 amino acids, one amino acid less than bovine lactoferrin, and has 92% homology with bovine lactoferrin. Deer lactoferricin exhibited strong antimicrobial activity against E. coli American Type Culture Collection (ATCC) 25922 and L. acidophilus ATCC 4356. The antimicrobial activities of deer and bovine Lfcin and Lfampin were compared. Based on MIC, deer Lfcin was found to be a more effective inhibitor of L. acidophilus ATCC 4356 than bovine Lfcin, but bovine Lfcin and Lfampin were more effective against E. coli ATCC 25922 than deer Lfcin and Lfampin. The deer Lfcin sequence differed at seven amino acids from bovine Lfcin and this decreased the net positive charge and increased the hydrophobicity. Deer Lfampin contained two differences in amino acid sequence compared to bovine Lfampin which decreased the net positive charge. These amino acid sequence differences likely account for differences in antibacterial activity. Positive charge and hydrophobic residues provide the amphipathic character of these helical peptides, and are considered important for binding of antimicrobial peptides. In silico modelling of deer Lfcin indicated an identical α-helical structure compared to bovine Lfcin.


2020 ◽  
Author(s):  
Alexander West ◽  
Giovanni Muncipinto ◽  
Hung-Yi Wu ◽  
Andrew Huang ◽  
Matthew T. Labenski ◽  
...  

<p>Diazirines are widely used in photoaffinity labeling (PAL) to trap non-covalent interactions with biomolecules. However, design and interpretation of PAL experiments is challenging without a molecular understanding of the reactivity of diazirines with protein biomolecules. Here, we report a systematic evaluation of the labeling preferences of alkyl and aryl diazirines with individual amino acids, single proteins, and in the whole cell proteome. We find that aryl-fluorodiazirines react primarily through a carbene intermediate, while alkyl diazirines generate a reactive alkyl diazo intermediate on route to the carbene. The generation of a reactive diazo intermediate leads to preferential labeling of acidic amino acids in a pH-dependent manner. From a survey of 32 alkyl diazirine probes, we use this reactivity profile to rationalize why these probes preferentially enrich highly acidic proteins or those embedded in membranes and why probes with a net positive-charge tend to produce higher labeling yields. These results indicate that alkyl diazirines are an especially effective chemistry for surveying the membrane proteome, and will facilitate probe design and interpretation of biomolecular labeling experiments with diazirines.<b></b></p>


2020 ◽  
Author(s):  
Alexander West ◽  
Giovanni Muncipinto ◽  
Hung-Yi Wu ◽  
Andrew Huang ◽  
Matthew T. Labenski ◽  
...  

<p>Diazirines are widely used in photoaffinity labeling (PAL) to trap non-covalent interactions with biomolecules. However, design and interpretation of PAL experiments is challenging without a molecular understanding of the reactivity of diazirines with protein biomolecules. Here, we report a systematic evaluation of the labeling preferences of alkyl and aryl diazirines with individual amino acids, single proteins, and in the whole cell proteome. We find that aryl-fluorodiazirines react primarily through a carbene intermediate, while alkyl diazirines generate a reactive alkyl diazo intermediate on route to the carbene. The generation of a reactive diazo intermediate leads to preferential labeling of acidic amino acids in a pH-dependent manner. From a survey of 32 alkyl diazirine probes, we use this reactivity profile to rationalize why these probes preferentially enrich highly acidic proteins or those embedded in membranes and why probes with a net positive-charge tend to produce higher labeling yields. These results indicate that alkyl diazirines are an especially effective chemistry for surveying the membrane proteome, and will facilitate probe design and interpretation of biomolecular labeling experiments with diazirines.<b></b></p>


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 747
Author(s):  
Vincenzo Cunsolo ◽  
Rosario Schicchi ◽  
Marco Chiaramonte ◽  
Luigi Inguglia ◽  
Vincenzo Arizza ◽  
...  

The present work was designed to identify and characterize novel antimicrobial peptides (AMPs) from Charybdis pancration (Steinh.) Speta, previously named Urginea maritima, is a Mediterranean plant, well-known for its biological properties in traditional medicine. Polypeptide-enriched extracts from different parts of the plant (roots, leaves and bulb), never studied before, were tested against two relevant pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. With the aim of identifying novel natural AMPs, peptide fraction displaying antimicrobial activity (the bulb) that showed minimum inhibitory concentration (MICs) equal to 30 µg/mL against the above mentioned strains, was analysed by high-resolution mass spectrometry and database search. Seventeen peptides, related to seven proteins present in the investigated database, were described. Furthermore, we focused on three peptides, which due to their net positive charge, have a better chance to be AMPs and they were investigated by molecular modelling approaches, in order to shed light on the solution properties of their equilibrium structures. Some of new detected peptides could represent a good platform for the development of new antimicrobials in the fight against antibiotic resistance phenomenon.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 512 ◽  
Author(s):  
Bruno ◽  
Maresca ◽  
Canaan ◽  
Cavalier ◽  
Mabrouk ◽  
...  

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10–100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Xiaoling Chen ◽  
Luyao Zhang ◽  
Chengbang Ma ◽  
Yingqi Zhang ◽  
Xinping Xi ◽  
...  

Antimicrobial peptides are a promising resource for developing novel antibiotic and even anticancer drugs. Here, a 28-mer polypeptide, Ranatuerin-2PLx (R2PLx), was identified from lyophilised skin secretions. The chemically synthetic replicates exhibited moderate and broadspectrum antimicrobial effect against various microorganisms including methicillin-resistant Staphylococcus aureus (MRSA, minimal inhibitory concentration = 256 µM). In addition, R2PLx was found to inhibit the proliferation of several tumour cells, especially showing more potent effect on prostate cancer cell, PC-3. The early cell apoptosis was observed in 6 h by Annexin V-FITC/propidium iodide staining, as well as the activation of Caspase-3 at 5 µM peptide concentration. R2PLx may therefore be promising for developing new therapeutic approach for cancer treatment. Moreover, the artificial deficiency of conserved rana-box loop or net positive charge in C-terminal domain notably reduced the biological activities of the truncated and substituted isoforms, respectively, suggesting for maintaining their biological potency of ranatuerin family requires both cysteine-bridged segment and cationincity within the loop domain in C-terminus.


2018 ◽  
Vol 14 ◽  
pp. 1693-1703 ◽  
Author(s):  
Marcelo D T Torres ◽  
Gislaine P Andrade ◽  
Roseli H Sato ◽  
Cibele N Pedron ◽  
Tania M Manieri ◽  
...  

About 1 in 8 U.S. women (≈12%) will develop invasive breast cancer over the course of their lifetime. Surgery, chemotherapy, radiotherapy, and hormone manipulation constitute the major treatment options for breast cancer. Here, we show that both a natural antimicrobial peptide (AMP) derived from wasp venom (decoralin, Dec-NH2), and its synthetic variants generated via peptide design, display potent activity against cancer cells. We tested the derivatives at increasing doses and observed anticancer activity at concentrations as low as 12.5 μmol L−1 for the selective targeting of MCF-7 breast cancer cells. Flow cytometry assays further revealed that treatment with wild-type (WT) peptide Dec-NH2 led to necrosis of MCF-7 cells. Additional atomic force microscopy (AFM) measurements indicated that the roughness of cancer cell membranes increased significantly when treated with lead peptides compared to controls. Biophysical features such as helicity, hydrophobicity, and net positive charge were identified to play an important role in the anticancer activity of the peptides. Indeed, abrupt changes in peptide hydrophobicity and conformational propensity led to peptide inactivation, whereas increasing the net positive charge of peptides enhanced their activity. We present peptide templates with selective activity towards breast cancer cells that leave normal cells unaffected. These templates represent excellent scaffolds for the design of selective anticancer peptide therapeutics.


Sign in / Sign up

Export Citation Format

Share Document