scholarly journals Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin

Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana
Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ~5000 folds within 48 hours, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site, with MM/PBSA free energy of -135.2 kJ/mol, almost twice that of Helicase (-76.6 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration. </p>


2020 ◽  
Author(s):  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Saroj Kumar Panda ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>While an FDA approved drug Ivermectin was reported to dramatically reduce the cell line of SARS-CoV-2 by ~5000 folds within 48 hours, the precise mechanism of action and the COVID-19 molecular target involved in interaction with this in-vitro effective drug are unknown yet. Among 12 different COVID-19 targets studied here, the RNA dependent RNA polymerase (RdRp) with RNA and Helicase NCB site show the strongest affinity to Ivermectin amounting -10.4 kcal/mol and -9.6 kcal/mol, respectively. Molecular dynamics of corresponding protein-drug complexes reveals that the drug bound state of RdRp with RNA has better structural stability than the Helicase NCB site, with MM/PBSA free energy of -135.2 kJ/mol, almost twice that of Helicase (-76.6 kJ/mol). The selectivity of Ivermectin to RdRp is triggered by a cooperative interaction of RNA-RdRp by ternary complex formation. Identification of the target and its interaction profile with Ivermectin can lead to more powerful drug designs for COVID-19 and experimental exploration. </p>


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 457
Author(s):  
Sara Artigas-Jerónimo ◽  
Margarita Villar ◽  
Alejandro Cabezas-Cruz ◽  
Grégory Caignard ◽  
Damien Vitour ◽  
...  

Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations and pathogen infection and transmission. The characterization of the molecular function of SUB and the identification of tick proteins interacting with SUB may provide the basis for the discovery of novel antigens and for the rational design of novel anti-tick vaccines. In the present study, we used the yeast two-hybrid system (Y2H) as an unbiased approach to identify tick SUB-interacting proteins in an Ixodes ricinus cDNA library, and studied the possible role of SUB as a chromatin remodeler through direct interaction with histones. The Y2H screening identified Importin-α as a potential SUB-interacting protein, which was confirmed in vitro in a protein pull-down assay. The sub gene expression levels in tick midgut and fat body were significantly higher in unfed than fed female ticks, however, the importin-α expression levels did not vary between unfed and fed ticks but tended to be higher in the ovary when compared to those in other organs. The effect of importin-α RNAi was characterized in I. ricinus under artificial feeding conditions. Both sub and importin-α gene knockdown was observed in all tick tissues and, while tick weight was significantly lower in sub RNAi-treated ticks than in controls, importin-α RNAi did not affect tick feeding or oviposition, suggesting that SUB is able to exert its function in the absence of Importin-α. Furthermore, SUB was shown to physically interact with histone 4, which was corroborated by protein pull-down and western blot analysis. These results confirm that by interacting with numerous tick proteins, SUB is a key cofactor of the tick interactome and regulome. Further studies are needed to elucidate the nature of the SUB-Importin-α interaction and the biological processes and functional implications that this interaction may have.


2014 ◽  
Vol 70 (3) ◽  
pp. 780-788 ◽  
Author(s):  
Jae-Woo Ahn ◽  
Sangwoo Kim ◽  
Eun-Jung Kim ◽  
Yeo-Jin Kim ◽  
Kyung-Jin Kim

The hPrp19–CDC5L complex plays a crucial role during human pre-mRNA splicing by catalytic activation of the spliceosome. In order to elucidate the molecular architecture of the hPrp19–CDC5L complex, the crystal structure of CTNNBL1, one of the major components of this complex, was determined. Unlike canonical ARM-repeat proteins such as β-catenin and importin-α, CTNNBL1 was found to contain a twisted and extended ARM-repeat structure at the C-terminal domain and, more importantly, the protein formed a stable dimer. A highly negatively charged patch formed in the N-terminal ARM-repeat domain of CTNNBL1 provides a binding site for CDC5L, a binding partner of the protein in the hPrp19–CDC5L complex, and these two proteins form a complex with a stoichiometry of 2:2. These findings not only present the crystal structure of a novel ARM-repeat protein, CTNNBL1, but also provide insights into the detailed molecular architecture of the hPrp19–CDC5L complex.


Metallomics ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 327-336 ◽  
Author(s):  
H. G. Colaço ◽  
P. E. Santo ◽  
P. M. Matias ◽  
T. M. Bandeiras ◽  
J. B. Vicente

Structural-functional platform unravels new roles for ZinT in cobalt, mercury and cadmium resistance, providing clues into the metal binding mechanism.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 281 ◽  
Author(s):  
Sundy Yang ◽  
Sarah Atkinson ◽  
Johanna Fraser ◽  
Chunxiao Wang ◽  
Belinda Maher ◽  
...  

Dengue virus (DENV) threatens almost 70% of the world’s population, with no effective vaccine or therapeutic currently available. A key contributor to infection is nuclear localisation in the infected cell of DENV nonstructural protein 5 (NS5) through the action of the host importin (IMP) α/β1 proteins. Here, we used a range of microscopic, virological and biochemical/biophysical approaches to show for the first time that the small molecule GW5074 has anti-DENV action through its novel ability to inhibit NS5–IMPα/β1 interaction in vitro as well as NS5 nuclear localisation in infected cells. Strikingly, GW5074 not only inhibits IMPα binding to IMPβ1, but can dissociate preformed IMPα/β1 heterodimer, through targeting the IMPα armadillo (ARM) repeat domain to impact IMPα thermal stability and α-helicity, as shown using analytical ultracentrifugation, thermostability analysis and circular dichroism measurements. Importantly, GW5074 has strong antiviral activity at low µM concentrations against not only DENV-2, but also zika virus and West Nile virus. This work highlights DENV NS5 nuclear targeting as a viable target for anti-flaviviral therapeutics.


2019 ◽  
Vol 116 (22) ◽  
pp. 10804-10812 ◽  
Author(s):  
Lior Almagor ◽  
Ivan S. Ufimtsev ◽  
Aruna Ayer ◽  
Jingzhi Li ◽  
William I. Weis

Metazoan cell polarity is controlled by a set of highly conserved proteins. Lethal giant larvae (Lgl) functions in apical-basal polarity through phosphorylation-dependent interactions with several other proteins as well as the plasma membrane. Phosphorylation of Lgl by atypical protein kinase C (aPKC), a component of the partitioning-defective (Par) complex in epithelial cells, excludes Lgl from the apical membrane, a crucial step in the establishment of epithelial cell polarity. We present the crystal structures of human Lgl2 in both its unphosphorylated and aPKC-phosphorylated states. Lgl2 adopts a double β-propeller structure that is unchanged by aPKC phosphorylation of an unstructured loop in its second β-propeller, ruling out models of phosphorylation-dependent conformational change. We demonstrate that phosphorylation controls the direct binding of purified Lgl2 to negative phospholipids in vitro. We also show that a coil–helix transition of this region that is promoted by phosphatidylinositol 4,5-bisphosphate (PIP2) is also phosphorylation-dependent, implying a highly effective phosphorylative switch for membrane association.


2010 ◽  
Vol 21 (4) ◽  
pp. 630-638 ◽  
Author(s):  
Yutaka Ogawa ◽  
Yoichi Miyamoto ◽  
Munehiro Asally ◽  
Masahiro Oka ◽  
Yoshinari Yasuda ◽  
...  

Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.


2021 ◽  
Vol 118 (34) ◽  
pp. e2101952118
Author(s):  
Inokentijs Josts ◽  
Katharina Veith ◽  
Vincent Normant ◽  
Isabelle J. Schalk ◽  
Henning Tidow

Gram-negative bacteria take up the essential ion Fe3+ as ferric-siderophore complexes through their outer membrane using TonB-dependent transporters. However, the subsequent route through the inner membrane differs across many bacterial species and siderophore chemistries and is not understood in detail. Here, we report the crystal structure of the inner membrane protein FoxB (from Pseudomonas aeruginosa) that is involved in Fe-siderophore uptake. The structure revealed a fold with two tightly bound heme molecules. In combination with in vitro reduction assays and in vivo iron uptake studies, these results establish FoxB as an inner membrane reductase involved in the release of iron from ferrioxamine during Fe-siderophore uptake.


Sign in / Sign up

Export Citation Format

Share Document