In-silico evidence of ADAM metalloproteinase pathology in cancer signaling networks

Author(s):  
Plaboni Sen ◽  
Thirukumaran Kandasamy ◽  
Siddhartha Sankar Ghosh
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tien-Dzung Tran ◽  
Duc-Tinh Pham

AbstractEach cancer type has its own molecular signaling network. Analyzing the dynamics of molecular signaling networks can provide useful information for identifying drug target genes. In the present study, we consider an on-network dynamics model—the outside competitive dynamics model—wherein an inside leader and an opponent competitor outside the system have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. If any normal agent links to the external competitor, the state of each normal agent will converge to a stable value, indicating support to the leader against the impact of the competitor. We determined the total support of normal agents to each leader in various networks and observed that the total support correlates with hierarchical closeness, which identifies biomarker genes in a cancer signaling network. Of note, by experimenting on 17 cancer signaling networks from the KEGG database, we observed that 82% of the genes among the top 3 agents with the highest total support are anticancer drug target genes. This result outperforms those of four previous prediction methods of common cancer drug targets. Our study indicates that driver agents with high support from the other agents against the impact of the external opponent agent are most likely to be anticancer drug target genes.


Physiology ◽  
2006 ◽  
Vol 21 (4) ◽  
pp. 289-296 ◽  
Author(s):  
Sriram M. Ajay ◽  
Upinder S. Bhalla

Synaptic plasticity provides a record of neuronal activity and is a likely basis for memory. The early apparent simplicity of the process of synaptic plasticity has been lost in a flood of experimental data that now implicates some 200 signaling molecules in cellular memory. It is now clear that these signaling networks perform surprisingly sophisticated cellular decisions that weigh factors such as input patterns, location of stimulus, history of activity, and context. Computer models have followed experiments into this maze of molecular detail, often matching closely with their experimental counterparts, but perhaps losing simplicity in the process. Here, we suggest that the merger of models and experiment have begun to restore the earlier simplicity by outlining a few key functional roles for signaling networks in synaptic plasticity. In this review, we discuss the current state of understanding of synaptic plasticity in terms of models and experiments.


2011 ◽  
Vol 21 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Rexxi D. Prasasya ◽  
Dan Tian ◽  
Pamela K. Kreeger

2021 ◽  
Author(s):  
Darren Wethington ◽  
Sayak Mukherjee ◽  
Jayajit Das

AbstractMass cytometry (CyTOF) gives unprecedented opportunity to simultaneously measure up to 40 proteins in single cells, with a theoretical potential to reach 100 proteins. This high-dimensional single-cell information can be very useful to dissecting mechanisms of cellular activity. In particular, measuring abundances of signaling proteins like phospho-proteins can provide detailed information on the dynamics of single-cell signaling processes. With a proper computational analysis, timestamped CyTOF data of signaling proteins could help develop predictive and mechanistic models for signaling kinetics. These models would be useful for predicting the effects of perturbations in cells, or comparing signaling networks across cell groups. We propose our Mass cytometry Signaling Network Analysis Code, or McSNAC, a new software capable of reconstructing signaling networks and estimating their kinetic parameters from CyTOF data.McSNAC approximates signaling networks as a network of first-order reactions between proteins. This assumption breaks down often as signaling reactions can involve binding and unbinding, enzymatic reactions, and other nonlinear constructions. Furthermore, McSNAC may be limited to approximating indirect interactions between protein species, as cytometry experiments are only able to assay a small fraction of the protein species that are involved in signaling. We carry out a series of in silico experiments here to show that 1) McSNAC is capable of accurately estimating the ground-truth model in a scalable manner when given data originating from a first-order system; 2) McSNAC is capable of qualitatively predicting outcomes to perturbations of species abundances in simple second-order reaction models and in a complex in silico nonlinear signaling network in which some proteins are unmeasured. These findings demonstrate that McSNAC can be a valuable screening tool for generating models of signaling networks from timestamped CyTOF data.


2017 ◽  
Vol 2 (1) ◽  
pp. 87-96
Author(s):  
Mingxing Zhou ◽  
◽  
Jing Liu ◽  
Shuai Wang ◽  
Shan He ◽  
...  

2018 ◽  
Vol 11 (531) ◽  
pp. eaaq1087 ◽  
Author(s):  
Mark Grimes ◽  
Benjamin Hall ◽  
Lauren Foltz ◽  
Tyler Levy ◽  
Klarisa Rikova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document