Determining similarities of COVID-19 – lung cancer drugs and affinity binding mode analysis by graph neural network-based GEFA method

Author(s):  
Cafer Budak ◽  
Vasfiye Mençik ◽  
Veysel Gider
2019 ◽  
Author(s):  
David Wright ◽  
Fouad Husseini ◽  
Shunzhou Wan ◽  
Christophe Meyer ◽  
Herman Van Vlijmen ◽  
...  

<div>Here, we evaluate the performance of our range of ensemble simulation based binding free energy calculation protocols, called ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) for use in fragment based drug design scenarios. ESMACS is designed to generate reproducible binding affinity predictions from the widely used molecular mechanics Poisson-Boltzmann surface area (MMPBSA) approach. We study ligands designed to target two binding pockets in the lactate dehydogenase A target protein, which vary in size, charge and binding mode. When comparing to experimental results, we obtain excellent statistical rankings across this highly diverse set of ligands. In addition, we investigate three approaches to account for entropic contributions not captured by standard MMPBSA calculations: (1) normal mode analysis, (2) weighted solvent accessible surface area (WSAS) and (3) variational entropy. </div>


Sign in / Sign up

Export Citation Format

Share Document