Beneficiation Strategies for Removal of Silica and Alumina from Low-Grade Hematite-Goethite Iron Ores

Author(s):  
V. Nunna ◽  
S. P. Suthers ◽  
M. I. Pownceby ◽  
G. J. Sparrow
Keyword(s):  
2013 ◽  
Vol 701 ◽  
pp. 28-31 ◽  
Author(s):  
Rusila Zamani Abd Rashid ◽  
Hadi Purwanto ◽  
Hamzah Mohd Salleh ◽  
Mohd Hanafi Ani ◽  
Nurul Azhani Yunus ◽  
...  

This paper pertains to the reduction process of local low grade iron ore using palm kernel shell (PKS). It is well known that low grade iron ores contain high amount of gangue minerals and combined water. Biomass waste (aka agro-residues) from the palm oil industry is an attractive alternative fuel to replace coal as the source of energy in mineral processing, including for the treatment and processing of low grade iron ores. Both iron ore and PKS were mixed with minute addition of distilled water and then fabricated with average spherical diameter of 10-12mm. The green composite pellets were subjected to reduction test using an electric tube furnace. The rate of reduction increased as temperature increases up to 900 °C. The Fe content in the original ore increased almost 12% when 40 mass% of PKS was used. The reduction of 60:40 mass ratios of iron ore to PKS composite pellet produced almost 11.97 mass% of solid carbon which was dispersed uniformly on the surface of iron oxide. The aim of this work is to study carbon deposition of PKS in iron ore through reduction process. Utilization of carbon deposited in low grade iron ore is an interesting method for iron making process as this solid carbon can act as energy source in the reduction process.


2020 ◽  
Author(s):  
Yildirim İsmail Tosun

The concentration of low grade iron ore resources was evaluated by washing and reduction. The advanced concentration methods for low grade limonite and hematite iron ores of South Eastern Anatolian resources required such specific methods. The followed column flotation and magnetic separation, microwave radiated reduction of hematite slime and limonite sand orewere investigated on potential reducing treatment. The bubling fluidized bed allows more time to the heat radiation and conduction for reducing to the resistive ıron compounds. Furthermore, heavy limonite and iron oxide allowed sufficient intimate contact coal and biomass through surface pores in the bubbling fluidized bed furnace due to more pyrolysis gas desorption. Bubbling bath porosity decreased by temperature decrease. This research was included reduction in microwave of poor hematite and limonite ores in the microwave ovens, but through smaller tubing flows as sintering shaft plants following column flotation and scavangering operation. Two principle stages could still manage prospective pre reduction granule and pellet production in new sintering plants. There is a lack of energy side which one can produce reduced iron ore in advanced technology plants worldwide. However, for the low grade iron ores such as limonite and sideritic iron ores it was thought that microwave reduction technique was assumed that this could cut energy consumption in the metallurgy plants.


2020 ◽  
Vol 56 (1) ◽  
pp. 47-58
Author(s):  
A. Messai ◽  
A. Idres ◽  
J.M. Menendez-Aguado

The recent developments of steel and iron industries generated a huge consumption of iron ores which has attracted much attention for utilizing low-grade iron resources to satisfy this increasing demand. The present study focuses on the characterization and enrichment of the low-grade iron ores from Rouina deposit-Ain Defla-. Currently, the ore is used in the cement industry because it is considered a low-grade iron ore. After the sampling process, a physico-chemical and mineralogical characterization was carried out and the results revealed that the sample consists of hematite, limonite and goethite as major opaque oxide minerals whereas silicates as well as clays form the gangue minerals in the sample. The average grade of FeTotal, SiO2 and Al2O3 contents in the raw material collected from the mine of the case study are 30.85%, 23.12% and 7.77% respectively. Processes involving combination of classification, washing and dry high-intensity magnetic separation were carried out to upgrade the low-grade iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to washing followed by drying than dry high intensity magnetic separation and it was observed that limited upgradation is possible. As a result, it was possible to obtain a magnetic concentrate of 54.09% with a recovery degree of 89.30% and yield of 62.82% using a magnetic field intensity equal to 2.4 Tesla at the size fraction [-0.125 +0.063 mm].


1998 ◽  
Vol 21 (1) ◽  
pp. 53-60
Author(s):  
R J Strachan ◽  
J E Hamilton ◽  
I Armit ◽  
I B M Ralston

Summary Excavations were carried out on two sites containing traces of iron ore processing, as part of the N-W Ethylene Pipeline Project, funded by Shell Chemicals UK Ltd. The excavations at Scabgill revealed a small part of an iron ore processing site apparently dating to the later medieval period or earlier. At nearby Boghall, a small furnace was excavated, which, while not itself datable, was also used in the processing of low grade, bog iron ores.


1958 ◽  
Vol 57 (3) ◽  
pp. 130-135
Author(s):  
Henry S. Heimonen
Keyword(s):  

Author(s):  
Lihua Luan ◽  
Lianjun Guo ◽  
Daning Zhang ◽  
Pengfei Pan ◽  
Houguang Sun ◽  
...  
Keyword(s):  

2019 ◽  
Vol 55 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Z.-D. Tang ◽  
P. Gao ◽  
Y.-X. Han ◽  
W. Guo

Due to the undesirable characteristics of iron ore resources in China, it is necessary to utilize refractory iron ores resources with high efficiency. The mining and mineral processing costs are usually high. The supply of domestic iron ores in China has been in serious shortage for a long time. Therefore, the development and utilization of complex and refractory iron ore resources are extremely urgent. Magnetizing roasting followed by magnetic separation is an important method for the beneficiation of low grade iron ores. More attention has been paid to fluidized bed magnetizing roasting rather than shaft furnace and rotary kiln roasting in recent years. In this paper, the main characteristics of fluidized bed magnetizing roasting technology and the development process of its application in the beneficiation of refractory iron ores are introduced. The research status of several typical fluidized bed roasting processes and equipment in China are also summarized. Moreover, the application prospect of the technology for efficient utilization of low grade hematite, siderite, and limonite ores, as well as iron containing tailings, is analyzed.


Sign in / Sign up

Export Citation Format

Share Document