scholarly journals Uremic serum induces prothrombotic changes in venous endothelial cells and inflammatory changes in aortic endothelial cells

Renal Failure ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 401-405
Author(s):  
Patrycja Sosińska-Zawierucha ◽  
Andrzej Bręborowicz
1983 ◽  
Vol 49 (02) ◽  
pp. 132-137 ◽  
Author(s):  
A Eldor ◽  
G Polliack ◽  
I Vlodavsky ◽  
M Levy

SummaryDipyrone and its metabolites 4-methylaminoantipyrine, 4-aminoantipyrine, 4-acetylaminoantipyrine and 4-formylaminoan- tipyrine inhibited the formation of thromboxane A2 (TXA2) during in vitro platelet aggregation induced by ADP, epinephrine, collagen, ionophore A23187 and arachidonic acid. Inhibition occurred after a short incubation (30–40 sec) and depended on the concentration of the drug or its metabolites and the aggregating agents. The minimal inhibitory concentration of dipyrone needed to completely block aggregation varied between individual donors, and related directly to the inherent capacity of their platelets to synthesize TXA2.Incubation of dipyrone with cultured bovine aortic endothelial cells resulted in a time and dose dependent inhibition of the release of prostacyclin (PGI2) into the culture medium. However, inhibition was abolished when the drug was removed from the culture, or when the cells were stimulated to produce PGI2 with either arachidonic acid or ionophore A23187.These results indicate that dipyrone exerts its inhibitory effect on prostaglandins synthesis by platelets or endothelial cells through a competitive inhibition of the cyclooxygenase system.


2021 ◽  
Vol 9 (1) ◽  
pp. e002085
Author(s):  
Yuan Wei ◽  
Suwen Bai ◽  
YanHeng Yao ◽  
Wenxuan Hou ◽  
Junwei Zhu ◽  
...  

IntroductionDiabetes-associated endothelial barrier function impairment might be linked to disturbances in Ca2+ homeostasis. To study the role and molecular mechanism of Orais–vascular endothelial (VE)-cadherin signaling complex and its downstream signaling pathway in diabetic endothelial injury using mouse aortic endothelial cells (MAECs).Research design and methodsThe activity of store-operated Ca2+ entry (SOCE) was detected by calcium imaging after 7 days of high-glucose (HG) or normal-glucose (NG) exposure, the expression levels of Orais after HG treatment was detected by western blot analysis. The effect of HG exposure on the expression of phosphorylated (p)-VE-cadherin and VE-cadherin on cell membrane was observed by immunofluorescence assay. HG-induced transendothelial electrical resistance was examined in vitro after MAECs were cultured in HG medium. FD-20 permeability was tested in monolayer aortic endothelial cells through transwell permeability assay. The interactions between Orais and VE-cadherin were detected by co-immunoprecipitation and immunofluorescence technologies. Immunohistochemical experiment was used to detect the expression changes of Orais, VE-cadherin and p-VE-cadherin in aortic endothelium of mice with diabetes.Results(1) The expression levels of Orais and activity of SOCE were significantly increased in MAECs cultured in HG for 7 days. (2) In MAECs cultured in HG for 7 days, the ratio of p-VE-cadherin to VE-cadherin expressed on the cell membrane and the FD-20 permeability in monolayer endothelial cells increased, indicating that intercellular permeability increased. (3) Orais and VE-cadherin can interact and enhance the interaction ratio through HG stimulation. (4) In MAECs cultured with HG, the SOCE activator ATP enhanced the expression level of p-VE-cadherin, and the SOCE inhibitor BTP2 decreased the expression level of p-VE-cadherin. (5) Significantly increased expression of p-VE-cadherin and Orais in the aortic endothelium of mice with diabetes.ConclusionHG exposure stimulated increased expression of Orais in endothelial cells, and increased VE-cadherin phosphorylation through Orais–VE-cadherin complex and a series of downstream signaling pathways, resulting in disruption of endothelial cell junctions and initiation of atherosclerosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Om Makwana ◽  
Gina A. Smith ◽  
Hannah E. Flockton ◽  
Gary P. Watters ◽  
Frazer Lowe ◽  
...  

AbstractAtherosclerosis is a complex process involving progressive pathological events, including monocyte adhesion to the luminal endothelial surface. We have developed a functional in vitro adhesion assay using BioFlux microfluidic technology to investigate THP-1 (human acute monocytic leukaemia cell) monocyte adhesion to human aortic endothelial cells (HAECs). The effect of whole smoke conditioned media (WSCM) generated from University of Kentucky reference cigarette 3R4F, electronic cigarette vapour conditioned media (eVCM) from an electronic nicotine delivery system (ENDS) product (Vype ePen) and nicotine on monocyte adhesion to HAECs was evaluated. Endothelial monolayers were grown in microfluidic channels and exposed to 0–1500 ng/mL nicotine or nicotine equivalence of WSCM or eVCM for 24 h. Activated THP-1 cells were perfused through the channels and a perfusion, adhesion period and wash cycle performed four times with increasing adhesion period lengths (10, 20, 30 and 40 min). THP-1 cell adhesion was quantified by counting adherent cells. WSCM induced dose-dependent increases in monocyte adhesion compared to vehicle control. No such increases were observed for eVCM or nicotine. Adhesion regulation was linked to increased ICAM-1 protein expression. Staining of ICAM-1 in HAECs and CD11b (MAC-1) in THP-1 cells demonstrated adhesion molecule co-localisation in BioFlux plates. The ICAM-1 adhesion response to WSCM was downregulated by transfecting HAECs with ICAM-1 siRNA. We conclude that the BioFlux system is able to model human monocyte adhesion to primary human endothelial cells in vitro and WSCM drives the greatest increase in monocyte adhesion via a mechanism involving endothelial ICAM-1 expression.


Sign in / Sign up

Export Citation Format

Share Document