Involvement of heme oxygenase-1 in suppression of T cell activation by quercetin

2020 ◽  
Vol 42 (4) ◽  
pp. 295-305
Author(s):  
Tomoshi Sugiyama ◽  
Miyoko Matsushima ◽  
Tomoko Ohdachi ◽  
Naozumi Hashimoto ◽  
Yoshinori Hasegawa ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Annemarie Noordeloos ◽  
Elza van Deel ◽  
Denise Hermes ◽  
Maarten L Simoons ◽  
Dirk J Duncker ◽  
...  

Introduction: Although expression of heme oxygenase-1 (HO1) attenuates transplantation arteriosclerosis, the mechanism by which HO1 exerts its protective effect remains unclear. We studied the effect of HO1-deficient vs. wildtype (WT) dendritic cells (DCs) on the T-cell priming response and outcome in a murine transplant arteriosclerosis model. Methods: At day 0 C57bl6 mice received either WT (n=6) or HO1-knockout DCs (n=6) pre-sensitized with Balb/c splenocytes lysate to accelerate the development of arteriosclerosis. At day 10 an aorta segment from Balb/c mice was transplanted into the carotid artery position of C57Bl6 mice.14 days after transplantation allografts were excised and processed for immunohistochemical analysis. Results: HO1-deficient DCs significantly increased neointimal hyperplasia as compared to WT DCs (116995 vs. 46114μm 2 P<0.05) and incidence of intima formation (83 vs. 50% in WT DC). HO1 deficient DCs also increased medial thickeness (15936 vs.12034 μm 2 P<0.05) and intimal VSMCs content (76 vs. 46% P<0.05) and resulted in more prominent medial cell infiltration (461μm 2 vs. 232μm 2 P<0.05). Although HO1 deficient and WT DCs could be detected in allografts, HO1-nullizygous DCs induced an increase in CD4+ T-cell infiltration (9.5 vs. 0.1% in WT P<0.05) concomitant to a decrease of CD8+ T cell infiltration (8 vs.14%, P<0.05). In line with these observations Affymetrix microarray analysis confirmed that HO1 deletion in DCs was associated with a significant downregulation of MHCII-H2A expression (associated with CD4+T-cell activation) and induction of inhibitors of MHCII expression (including IK protein) whereas MHC I expression remained unchanged. Conclusions: HO1 expression in dendritic cells increases vascular cell infiltration with a higher CD8+/CD4+ T-cell ratio by stabilizing MHCII expression in vascular allografts resulting in inhibition of neointima formation and hence improved allograft survival.


Blood ◽  
2009 ◽  
Vol 114 (1) ◽  
pp. 64-73 ◽  
Author(s):  
Hironori Matsushima ◽  
Hiroaki Tanaka ◽  
Norikatsu Mizumoto ◽  
Akira Takashima

Abstract By screening 720 natural compounds in a standard 2-way allogeneic mixed leukocyte reaction assay, we identified a potent immunosuppressive capacity of crassin acetate (CRA), a coral-derived cembrane diterpenoid. CRA efficiently inhibited allogeneic mixed leukocyte reaction as well as antigen-specific activation of CD4 T cells by bone marrow–derived dendritic cells (DCs). With regard to cellular targets, CRA suppressed not only mitogen-triggered T-cell activation, but also lipopolysaccharide-induced DC maturation, indicating dual functionality. Treatment with CRA at nontoxic doses induced heme oxygenase-1 (HO-1) mRNA/protein expression and HO-1 enzymatic activity in DCs, suggesting a unique mechanism of action. In fact, lipopolysaccharide-induced DC maturation was also inhibited by structurally unrelated compounds known to induce HO-1 expression or carbon monoxide (CO) release. Allergic contact hypersensitivity response to oxazolone and oxazolone-induced Langerhans cell migration from epidermis were both prevented almost completely by systemic administration of CRA. Not only do our results support the recent concept that HO-1/CO system negatively regulates immune responses, they also form both conceptual and technical frameworks for a more systematic, large-scale drug discovery effort to identify HO-1/CO-targeted immunosuppressants with dual target specificity.


Sign in / Sign up

Export Citation Format

Share Document