Marine biofouling field tests, settlement assay and footprint micromorphology of cyprid larvae of Balanus amphitrite on model surfaces

Biofouling ◽  
2009 ◽  
Vol 25 (2) ◽  
pp. 139-147 ◽  
Author(s):  
In Yee Phang ◽  
Kuan Chun Chaw ◽  
Sue Sok Hui Choo ◽  
Ryan Kok Chuan Kang ◽  
Serina Siew Chen Lee ◽  
...  
2019 ◽  
Vol 374 (1784) ◽  
pp. 20190203 ◽  
Author(s):  
Kenan P. Fears ◽  
Andrew Barnikel ◽  
Ann Wassick ◽  
Heonjune Ryou ◽  
Janna N. Schultzhaus ◽  
...  

Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na + , Mg 2+ and BO 4 3− ) to the adhesive interface under acorn barnacles ( Amphibalanus ( =Balanus ) amphitrite ). Additionally, surface-active glasses formed reaction layers at the glass–water interface, presenting another challenge to fouling organisms. Proteomics analysis showed that cement deposited on the gelatinous reaction layers is more soluble than cement deposited on insoluble glasses, indicating the reaction layer and/or released ions disrupted adhesion processes. Laboratory experiments showed that the majority (greater than 79%) of adult barnacles re-attached to silica-free borate glasses for 14 days could be released and, more importantly, barnacle larvae did not settle on the glasses. The formation of microbial biofilms in field tests diminished the performance of the materials. While periodic water jetting (120 psi) did not prevent the formation of biofilms, weekly cleaning did dramatically reduce macrofouling on magnesium aluminoborate glass to levels below a commercial foul-release coating. This article is part of the theme issue ‘Transdisciplinary approaches to the study of adhesion and adhesives in biological systems’.


Author(s):  
Grazia Tagliafierro ◽  
Cristiana Crosa ◽  
Marco Canepa ◽  
Tiziano Zanin

Barnacles are very specialized Crustacea, with strongly reduced head and abdomen. Their nervous system is rather simple: the brain or supra-oesophageal ganglion (SG) is a small bilobed structure and the toracic ganglia are fused into a single ventral mass, the suboesophageal ganglion (VG). Neurosecretion was shown in barnacle nervous system by histochemical methods and numerous putative hormonal substances were extracted and tested. Recently six different types of dense-core granules were visualized in the median ocellar nerve of Balanus hameri and serotonin and FMRF-amide like substances were immunocytochemically detected in the nervous system of Balanus amphitrite. The aim of the present work is to localize and characterize at ultrastructural level, neurosecretory neuron cell bodies in the VG of Balanus amphitrite.Specimens of Balanus amphitrite were collected in the port of Genova. The central nervous system were Karnovsky fixed, osmium postfixed, ethanol dehydrated and Durcupan ACM embedded. Ultrathin sections were stained with uranyl acetate and lead citrate. Ultrastructural observations were made on a Philips M 202 and Zeiss 109 T electron microscopy.


1992 ◽  
Author(s):  
TETSUSHI IKEGAMI ◽  
SHINICHI TAIRA ◽  
YOSHIYA ARAKAKI ◽  
RYUTARO SUZUKI

Sign in / Sign up

Export Citation Format

Share Document