neurosecretory neurons
Recently Published Documents


TOTAL DOCUMENTS

166
(FIVE YEARS 6)

H-INDEX

32
(FIVE YEARS 1)

2021 ◽  
Vol 22 (13) ◽  
pp. 7140
Author(s):  
Michael R. Perkinson ◽  
Rachael A. Augustine ◽  
Gregory T. Bouwer ◽  
Emily F. Brown ◽  
Isaiah Cheong ◽  
...  

Oxytocin and vasopressin secretion from the posterior pituitary gland are required for normal pregnancy and lactation. Oxytocin secretion is relatively low and constant under basal conditions but becomes pulsatile during birth and lactation to stimulate episodic contraction of the uterus for delivery of the fetus and milk ejection during suckling. Vasopressin secretion is maintained in pregnancy and lactation despite reduced osmolality (the principal stimulus for vasopressin secretion) to increase water retention to cope with the cardiovascular demands of pregnancy and lactation. Oxytocin and vasopressin secretion are determined by the action potential (spike) firing of magnocellular neurosecretory neurons of the hypothalamic supraoptic and paraventricular nuclei. In addition to synaptic input activity, spike firing depends on intrinsic excitability conferred by the suite of channels expressed by the neurons. Therefore, we analysed oxytocin and vasopressin neuron activity in anaesthetised non-pregnant, late-pregnant, and lactating rats to test the hypothesis that intrinsic excitability of oxytocin and vasopressin neurons is increased in late pregnancy and lactation to promote oxytocin and vasopressin secretion required for successful pregnancy and lactation. Hazard analysis of spike firing revealed a higher incidence of post-spike hyperexcitability immediately following each spike in oxytocin neurons, but not in vasopressin neurons, in late pregnancy and lactation, which is expected to facilitate high frequency firing during bursts. Despite lower osmolality in late-pregnant and lactating rats, vasopressin neuron activity was not different between non-pregnant, late-pregnant, and lactating rats, and blockade of osmosensitive ΔN-TRPV1 channels inhibited vasopressin neurons to a similar extent in non-pregnant, late-pregnant, and lactating rats. Furthermore, supraoptic nucleus ΔN-TRPV1 mRNA expression was not different between non-pregnant and late-pregnant rats, suggesting that sustained activity of ΔN-TRPV1 channels might maintain vasopressin neuron activity to increase water retention during pregnancy and lactation.


2021 ◽  
Author(s):  
Michael R Perkinson ◽  
Rachael A Augustine ◽  
Gregory T Bouwer ◽  
Emily F Brown ◽  
Isaiah Cheong ◽  
...  

Oxytocin and vasopressin secretion from the posterior pituitary gland are required for normal pregnancy and lactation. Oxytocin secretion is relatively low and constant under basal conditions but becomes pulsatile during birth and lactation to stimulate episodic contraction of the uterus for delivery of the fetus and milk ejection during suckling. Vasopressin secretion is maintained in pregnancy and lactation despite reduced osmolality (the principal stimulus for vasopressin secretion) to increase water retention to cope with the cardiovascular demands of pregnancy and lactation. Oxytocin and vasopressin secretion are determined by the action potential (spike) firing of magnocellular neurosecretory neurons of the hypothalamic supraoptic and paraventricular nucleus. In addition to synaptic input activity, spike firing depends on intrinsic excitability conferred by the suite of channels expressed by the neurons. Therefore, we analysed oxytocin and vasopressin neuron activity in anaesthetised non-pregnant, late-pregnant and lactating rats to test the hypothesis that intrinsic excitability of oxytocin and vasopressin neurons is increased in late pregnancy and lactation to promote oxytocin and vasopressin secretion required for successful pregnancy and lactation. Hazard analysis of spike firing revealed a higher incidence of post-spike hyperexcitability immediately following each spike in oxytocin neurons, but not in vasopressin neurons, in late pregnancy and lactation, which is expected to facilitate high frequency firing during bursts. Despite lower osmolality in late-pregnant and lactating rats, vasopressin neuron activity was not different between non-pregnant, late-pregnant and lactating rats, and blockade of osmosensitive ΔN-TRPV1 channels inhibited vasopressin neurons to a similar extent in non-pregnant, late-pregnant and lactating rats. Furthermore, supraoptic nucleus ΔN-TRPV1 mRNA expression was not different between non-pregnant and late-pregnant rats, suggesting that enhanced activity of ΔN-TRPV1 channels might maintain vasopressin neuron activity to increase water retention during pregnancy and lactation. Introduction


2019 ◽  
Author(s):  
HC Ferreira-Neto ◽  
JE Stern

ABSTRACTGlutamatergic NMDA receptors (NMDAR) and small conductance Ca2+-activated K+ channels (SK) are critical synaptic and intrinsic mechanisms that regulate the activity of hypothalamic magnocellular neurosecretory neurons (MNNs) under physiological and pathological states, including lactation and heart failure (HF). Still, whether NMDARs and SK channels in MNNs are functionally coupled, and whether changes in this coupling contribute to exacerbated neuronal activity during HF is at present unknown. In the present study, we addressed these questions using patch-clamp electrophysiology and confocal Ca2+ imaging in a rat model of ischaemic HF. We found that in MNNs of sham rats, blockade of SK channels with apamin (200 nM) significantly increased the magnitude of an NMDAR-evoked current (INMDA). We also observed that blockade of SK channels potentiated NMDAR-evoked firing, and abolished spike frequency adaptation in MNNs from sham, but not HF rats. Importantly, a larger INMDA-ΔCa2+response was observed under basal conditions in HF compared to sham rats. Finally, we found that dialyzing recorded cells with the Ca2+ chelator BAPTA (10 mM) increased the magnitude of INMDA in MNNs from both sham and HF rats, and occluded the effects of apamin in the former. Together, our studies demonstrate that in MNNs, NMDARs and SK channels are functionally coupled, forming a local negative feedback loop that restrains the excitatory effect evoked by NMDAR activation. Moreover, our studies also support a blunted NMDAR-SK channel coupling in MNNs of HF rats, standing thus as a pathophysiological mechanism contributing to exacerbated hypothalamic neuronal activity during this prevalent neurogenic cardiovascular disease.


2019 ◽  
Vol 317 (3) ◽  
pp. H496-H504
Author(s):  
Soledad Pitra ◽  
Caleb J. Worker ◽  
Yumei Feng ◽  
Javier E. Stern

Accumulating evidence supports that the brain renin-angiotensin system (RAS), including prorenin (PR) and its receptor (PRR), two newly discovered RAS players, contribute to sympathoexcitation in salt-sensitive hypertension. Still, whether PR also contributed to elevated circulating levels of neurohormones such as vasopressin (VP) during salt-sensitive hypertension, and if so, what are the precise underlying mechanisms, remains to be determined. To address these questions, we obtained patch-clamp recordings from hypothalamic magnocellular neurosecretory neurons (MNNs) that synthesize the neurohormones oxytocin and VP in acute hypothalamic slices obtained from sham and deoxycorticosterone acetate (DOCA)-salt-treated hypertensive rats. We found that focal application of PR markedly increased membrane excitability and firing responses in MNNs of DOCA-salt, compared with sham rats. This effect included a shorter latency to spike initiation and increased numbers of spikes in response to depolarizing stimuli and was mediated by a more robust inhibition of A-type K+ channels in DOCA-salt compared with sham rats. On the other hand, the afterhyperpolarizing potential mediated by the activation of Ca2+-dependent K+ channel was not affected by PR. mRNA expression of PRR, VP, and the Kv4.3 K+ channel subunit in the supraoptic nucleus of DOCA-salt hypertensive rats was increased compared with sham rats. Finally, we report a significant decrease of plasma VP levels in neuron-selective PRR knockdown mice treated with DOCA-salt, compared with wild-type DOCA-salt-treated mice. Together, these results support that activation of PRR contributes to increased excitability and firing discharge of MNNs and increased plasma levels of VP in DOCA-salt hypertension. NEW & NOTEWORTHY Our studies support that prorenin (PR) and its receptor (PRR) within the hypothalamus contribute to elevated plasma vasopressin levels in deoxycorticosterone acetate-salt hypertension, in part because of an exacerbated effect of PR on magnocellular neurosecretory neuron excitability; Moreover, our study implicates A-type K+ channels as key underlying molecular targets mediating these effects. Thus, PR/PRR stands as a novel therapeutic target for the treatment of neurohumoral activation in salt-sensitive hypertension.


2019 ◽  
Vol 20 (3) ◽  
pp. 489 ◽  
Author(s):  
Carla Cioni ◽  
Elisa Angiulli ◽  
Mattia Toni

The involvement of nitric oxide (NO) in the modulation of teleost osmoresponsive circuits is suggested by the facts that NO synthase enzymes are expressed in the neurosecretory systems and may be regulated by osmotic stimuli. The present paper is an overview on the research suggesting a role for NO in the central modulation of hormone release in the hypothalamo-neurohypophysial and the caudal neurosecretory systems of teleosts during the osmotic stress response. Active NOS enzymes are constitutively expressed by the magnocellular and parvocellular hypophysiotropic neurons and the caudal neurosecretory neurons of teleosts. Moreover, their expression may be regulated in response to the osmotic challenge. Available data suggests that the regulatory role of NO appeared early during vertebrate phylogeny and the neuroendocrine modulation by NO is conservative. Nonetheless, NO seems to have opposite effects in fish compared to mammals. Indeed, NO exerts excitatory effects on the electrical activity of the caudal neurosecretory neurons, influencing the amount of peptides released from the urophysis, while it inhibits hormone release from the magnocellular neurons in mammals.


2018 ◽  
Vol 2 ◽  
pp. 239821281881201 ◽  
Author(s):  
John A. Russell

Importance of the neuroendocrine brain for health and happiness has become clear since the 1960s. Foundations laid 100 years ago culminated in Geoffrey W Harris’s model of control by the brain of secretion of anterior and posterior pituitary gland hormones through, respectively, releasing factors secreted into the hypothalamic-hypophysial portal system, and directly from axon terminals into the systemic circulation. Confirmation, expansion and deepening of knowledge and understanding have followed increasingly sophisticated technology. This allowed chemical characterisation of the posterior pituitary hormones, oxytocin and vasopressin, the releasing factors, their receptors and genes, location of the neurosecretory neurons in the hypothalamus, and how their activity is controlled, including by neural and hormonal feedback, and how hormone rhythms are generated. Wider roles of these neurons and their peptides in the brain are now recognised: in reproductive and social behaviours, emotions and appetite. Plasticity and epigenetic programming of neuroendocrine systems have emerged as important features.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Elizabeth A Williams ◽  
Csaba Verasztó ◽  
Sanja Jasek ◽  
Markus Conzelmann ◽  
Réza Shahidi ◽  
...  

Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.


Sign in / Sign up

Export Citation Format

Share Document