Preparation of a mesoporous silica quorum quenching medium for wastewater treatment using a membrane bioreactor

Biofouling ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 369-377
Author(s):  
Kibaek Lee ◽  
Kwang-Ho Choo ◽  
How Yong Ng ◽  
Chung-Hak Lee
2016 ◽  
Vol 50 (20) ◽  
pp. 10914-10922 ◽  
Author(s):  
Kibaek Lee ◽  
Seonki Lee ◽  
Sang Hyun Lee ◽  
Sang-Ryoung Kim ◽  
Hyun-Suk Oh ◽  
...  

2016 ◽  
Vol 113 (12) ◽  
pp. 2624-2632 ◽  
Author(s):  
Huarong Yu ◽  
Heng Liang ◽  
Fangshu Qu ◽  
Junguo He ◽  
Guoren Xu ◽  
...  

2020 ◽  
Vol 194 ◽  
pp. 04026
Author(s):  
Xinmeng Jiao ◽  
Kang Xie ◽  
Liping Qiu

Membrane bioreactor (MBR) is a kind of reputable and prospective technology for wastewater treatment and reformation applications. However, membrane fouling caused by the formation of biofilm on the membrane surface, especially biofouling, is a major obstacle that limits the energy-saving operation and maintenance of the membrane bioreactor (MBR). Microbial communication (known as Quorum Sensing (QS)) is the cause of this fouling phenomenon. A new strategy called Quorum Quenching (QQ) seems to have been successfully used for biological pollution control in wastewater treatment MBR. This review summarizes the latest findings regarding membrane fouling, QS mechanisms and QQ applications. We discussed the opportunities for further practical application of self-cleaning engineering QQ bacteria in MBR.


Author(s):  
Mary Vermi Aizza Corpuz ◽  
Laura Borea ◽  
Vincenzo Senatore ◽  
Fabiano Castrogiovanni ◽  
Antonio Buonerba ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 153-165 ◽  
Author(s):  
Nur Hafizah Ab Hamid ◽  
Simon Smart ◽  
David K. Wang ◽  
Kaniel Wei Jun Koh ◽  
Kalvin Jiak Chern Ng ◽  
...  

This study systematically explores the potential applications of forward osmosis (FO) membrane based technology in urban wastewater treatment and water reclamation for their techno-economic feasibility and sustainability.


2018 ◽  
Vol 19 (3) ◽  
pp. 718-724
Author(s):  
Zhenmin Cheng ◽  
Yuansong Wei ◽  
Min Gao ◽  
Junya Zhang ◽  
Liangchang Zhang ◽  
...  

Abstract A novel wastewater treatment and reuse system (WTRS) combining an anaerobic membrane bioreactor (AnMBR) and an aerobic membrane bioreactor (MBR) with the design capacity of 115 L/d was developed for a terrestrial-based controlled ecological life support system (CELSS). Results clearly showed that the WTRS realized mineralization of organic compounds and reservation of nitrogenous nutrient, therefore converting the effluent into replenishment for the hydroponic system. Trace gas emission from the WTRS could meet requirements for the whole CELSS. Compared with physico-chemical processes, the specific consumables consumption of the WTRS was advantageous but its specific energy consumption is still in need of improvement. Results of microbial community analysis were consistent with the running state of the AnMBR and the MBR.


Sign in / Sign up

Export Citation Format

Share Document