scholarly journals Seeded Free-Electron Lasers and Free-Electron Laser Applications

2016 ◽  
Vol 29 (3) ◽  
pp. 2-3 ◽  
Author(s):  
Fulvio Parmigiani ◽  
Daniel Ratner
2018 ◽  
Vol 25 (5) ◽  
pp. 1317-1322 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
QiKa Jia

It was demonstrated that harmonic order in free-electron laser (FEL) oscillations could be switched by adjusting the dispersive gap of the optical klystron ETLOK-III in the storage ring NIJI-IV. The effective gains for the fundamental and third-harmonic FEL oscillations were evaluated and it was confirmed that the FEL oscillated at the order of the harmonic with the higher effective gain. The ratio between the effective gain for the fundamental and that for the third harmonic was controlled by the dispersive gap. It was also demonstrated that a spectral measurement of the FEL-based Compton scattering X-ray beam was effective for directly observing the switching of the harmonic order. These results contribute to the development of higher-harmonic FEL oscillations suppressing the fundamental FEL oscillation in the extreme ultraviolet and X-ray regions.


1995 ◽  
Vol 02 (04) ◽  
pp. 501-512 ◽  
Author(s):  
N.H. TOLK ◽  
J.T. MCKINLEY ◽  
G. MARGARITONDO

Synchrotron-radiation sources have become, since the late 1960’s, one of the fundamental experimental tools for surface and interface research. Only recently, however, a related type of photon sources - the free-electron lasers (FELs) — has begun to make important contributions to this field. For example, FELs have been used to reach unprecedented levels of accuracy and reliability in measuring semiconductor interface energy barriers. We review some of the present and proposed experiments that are made possible by the unmatched brightness and broad tunability of infrared FELs. Practical examples discussed in the review are supplied by our own programs at the Vanderbilt Free-Electron Laser. We also briefly analyze the possible future development of FELs and of their applications to surface and interface research, in particular, the possibility of x-ray FELs.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130337 ◽  
Author(s):  
Uwe Weierstall

X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques.


2014 ◽  
Vol 534 ◽  
pp. 012053
Author(s):  
G Mishra ◽  
Geetanjali Sharma ◽  
Roma Khullar ◽  
Bramh Prakash ◽  
Mona Gehlot

2016 ◽  
Vol 72 (2) ◽  
pp. 177-178
Author(s):  
Huaidong Jiang

Recent developments in the imaging of biological samples using the X-ray free-electron laser at the SACLA facility are highlighted.


2017 ◽  
Vol 24 (5) ◽  
pp. 912-918 ◽  
Author(s):  
Norihiro Sei ◽  
Hiroshi Ogawa ◽  
Shuichi Okuda

The influence of higher-harmonic free-electron laser (FEL) oscillations on an electron beam have been studied by measuring its bunch length at the NIJI-IV storage ring. The bunch length and the lifetime of the electron beam were measured, and were observed to have become longer owing to harmonic lasing, which is in accord with the increase of the FEL gain. It was demonstrated that the saturated FEL power could be described by the theory of bunch heating, even for the harmonic lasing. Cavity-length detuning curves were measured for the harmonic lasing, and it was found that the width of the detuning curve was proportional to a parameter that depended on the bunch length. These experimental results will be useful for developing compact resonator-type FELs by using higher harmonics in the extreme-ultraviolet and the X-ray regions.


2014 ◽  
Vol 171 ◽  
pp. 487-503 ◽  
Author(s):  
Filippo Bencivenga ◽  
Flavio Capotondi ◽  
Francesco Casolari ◽  
Francesco Dallari ◽  
Miltcho B. Danailov ◽  
...  

We report on new opportunities for ultrafast science thanks to the use of two-colour extreme ultraviolet (XUV) pulses at the FERMI free electron laser (FEL) facility. The two pulses have been employed to carry out a pioneering FEL-pump/FEL-probe diffraction experiment using a Ti target and tuning the FEL pulses to the M2/3-edge in order to explore the dependence of the dielectric constant on the excitation fluence. The future impact that the use of such a two-colour FEL emission will have on the development of ultrafast wave-mixing methods in the XUV/soft X-ray range is addressed and discussed.


Sign in / Sign up

Export Citation Format

Share Document