Phase equilibria in Hg-He mixtures near the critical point of almost pure Hg

1990 ◽  
Vol 4 (1-6) ◽  
pp. 604-606
Author(s):  
G. Schönherr ◽  
W. Götzlaff ◽  
G. Schäfer ◽  
F. Hensel
2018 ◽  
Vol 54 (4) ◽  
pp. 38-44
Author(s):  
М. Petrenko ◽  
S. Artemenko ◽  
D. Nikitin

The importance of thermodynamic and phase behavior of working fluids embedded with nanostructured materials is fundamental to new nanotechnology applications. The fullerenes (C60) and carbon nanotubes (CNT) adding to refrigerants change their thermodynamic properties the Joule – Thomson effect such as dislocation of critical point, gas – liquid equilibria shift at alias. Algorithm of refrigerant thermodynamic property calculations based on the NIST (National Institute of Standards and Technologies) equation of state at different carbon nanotube concentrations is proposed. Thermodynamic properties of carbon dioxide in the C60 and CNT presence are given.  Considering the extremely large number of different both nanoparticle types and reference fluids, it is obvious that there is need for developing theoretically sound methods of the prompt estimation thermodynamic properties and phase equilibria for emerging working media. The effect of nanoparticles on the critical point shift for classical fluids doped by nanoparticles is examined. The regular and singular parts of thermodynamic surface of reference fluid and nanofluid (volume nanoparticle concentration < 5%) are suggested to coincide in the reduced form. The shift of critical point for nanoliquids of industrial interest is theoretically predicted. Results of calculations of phase equilibria for some nanofluids are described.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6621
Author(s):  
Asaf Chiko ◽  
Ilya Polishuk ◽  
Esteban Cea-Klapp ◽  
José Matías Garrido

This study compares performances of the Critical Point-based revision of Perturbed-Chain SAFT (CP-PC-SAFT) and the SAFT of Variable Range and Mie Potential (SAFT-VR-Mie) in predicting the available data on VLE, LLVE, critical loci and saturated phase densities of systems comprising CO, O2, CH4, H2S, SO2, propane, the refrigerants R22, R23, R114, R124, R125, R125, R134a, and R1234ze(E) and ionic liquids (ILs) with 1-alkyl-3-methylimidazolium ([Cnmim]+) cations and bis(trifluoromethanesulfonyl)imide ([NTf2]−), tetrafluoroborate ([BF4]−) and hexafluorophosphate ([PF6]−) anions. Both models were implemented in the entirely predictive manner with k12 = 0. The fundamental Global Phase Diagram considerations of the IL systems are discussed. It is demonstrated that despite a number of quantitative inaccuracies, both models are capable of reproducing the regularities characteristic for the considered systems, which makes them suitable for preliminary estimation of selectivity of the ILs in separating various gases.


1989 ◽  
Vol 4 (3) ◽  
pp. 678-687 ◽  
Author(s):  
C. S. Chiang ◽  
William C. Johnson

The influence of coherency strains on phase equilibria in a two-phase microstructure is examined for a binary or pseudobinary alloy system possessing a consolute critical point (chemical miscibility gap). The qualitative features of phase equilibria, including the limits of metastability (chemical spinodal), are shown to depend critically on the mechanical loading conditions and the geometric arrangement of the phases in the microstructure. If the elastic state of a phase in a two-phase coherent system is independent of the presence of the other phase, then the equilibrium characteristics usually associated with fluid systems should be observed, even though the system is nonhydrostatically stressed. If the elastic state of a phase depends upon the presence of the other phase, then the equilibrium characteristics that have come to be associated with coherent systems should be observed; tie lines and field lines do not coincide, the common tangent construction is invalid, and Gibbs phase rule is not applicable.


1982 ◽  
Vol 26 (1) ◽  
pp. 556-566 ◽  
Author(s):  
H. Furukawa ◽  
K. Binder

Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


Sign in / Sign up

Export Citation Format

Share Document