A Review of the Influence of Particle Size, Puff Volume, and Inhalation Pattern on the Deposition of Cigarette Smoke Particles in the Respiratory Tract

2004 ◽  
Vol 16 (10) ◽  
pp. 675-689 ◽  
Author(s):  
David M. Bernstein
2021 ◽  
Vol 35 (1) ◽  
pp. 28-40
Author(s):  
Jaehark Goo

Many fire-related casualties are caused by smoke inhalation. The particulate matter in smoke is deposited on the walls of the respiratory system, and adversely affects the human body through the respiratory and circulatory systems. In order to estimate the adverse effects of smoke particles on the human body, it is reasonable to consider the quantity of harmful substances from smoke particles that are absorbed by each region of the respiratory tract rather than the mass concentration of smoke particles in the air. This is because the absorption amount is a consequent factor that depends on a wide variety of other factors and is not solely determined by the causative factor, that is, the mass concentration in the air. In this study, the lung deposition loads of smoke particles from plastics, such as LDPE, PA66, PMMA, and PVC were quantified using the lung deposition load index (LDLIn), and the results were compared with the findings of conventional particulate matter (PM) mass concentration indices, such as PM2.5 mass and PM10 mass. The LDLIn value was calculated from the number of smoke particles generated during a fire that were deposited in each region of the respiratory tract for the given combustion materials and fire conditions. Herein, the LDLIn quantified the lung deposition load by reflecting the surface area concentration by particle size as well as the deposition characteristics in the respiratory tract according to particle size and breathing conditions. Even at the same PM mass concentration index value, each material and fire condition resulted in different LDLIn values according to the change in concentration distribution by particle size. The LDLIn values also varied depending on the breathing conditions.


Author(s):  
R. A. Crellin ◽  
G. O. Brooks ◽  
H. G. Horsewell

AbstractA ventilating filter for cigarettes has been developed which reduces the delivery of smoke constituents from the final two to three puffs. Since the normaI delivery for these three puffs can account for up to half the total particulate matter and nicotine delivered by the whole cigarette, usefuI reductions per cigarette can be produced. The ventilating filter consists of cellulose acetate tow wrapped in heat-shrinkable film and attached to a tobacco rod using perforated tipping paper. When the cigarette is smoked, the perforations remain closed by contact with the impermeable film until transfer of heat to the filter is sufficient to soften the filter tow and shrink the film. Ventilating air now enters the cigarette and reduces the smoke deliveries. The effectiveness of the ventilating filter is increased by using films which have a low shrink temperature, high shrink tension and a high degree of biaxiaI shrinkage. Increases in filter plasticiser level, tipping perforation area and puff volume improve the effectiveness of the ventilating filter but increases in cigarette paper porosity and tobacco butt length reduce the effectiveness


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


Sign in / Sign up

Export Citation Format

Share Document