Genotypic differences in growth, yield and nutrient accumulation of spring wheat cultivars in response to long-term soil fertility regimes

Author(s):  
Yaosheng Wang ◽  
Jakob Magid ◽  
Kristian Thorup-Kristensen ◽  
Lars Stoumann Jensen
1987 ◽  
Vol 67 (4) ◽  
pp. 845-856 ◽  
Author(s):  
H. H. JANZEN

Soil from a long-term crop rotation study conducted at Lethbridge, Alberta was analyzed to determine the influence of various spring wheat rotations with and without perennial forages on total and mineralizable soil organic matter contents. Crop rotations considered included: continuous wheat (W), fallow-wheat (FW), fallow-wheat-wheat (FWW), and fallow-wheat-wheat-forage-forage-forage (FWWAAA) in which the forage was a mixture of alfalfa and crested wheat grass. The organic C and N contents of soil after 33 yr of cropping were highest in treatments W and FWWAAA, and decreased with increasing frequency of fallow in the rotation. The inclusion of the perennial forage in the rotation did not increase organic C and N levels above those observed in the continuous wheat treatment (W). Differences in levels of mineralizable organic matter among treatments, as measured in laboratory incubations, were much greater than differences in total organic matter content among treatments. In the surface soil layer (0–15 cm), N mineralization was significantly higher in treatment W than in treatments FWW and FWWAAA, and was more than twice that observed in treatment FW. In the subsurface soil layer (15–30 cm), N mineralization was greatest in treatment FWWAAA when sampled just after the plowdown of forage. Effects of crop rotation on C mineralization were similar to those observed for N. Levels of mineralized organic matter were closely related to levels of "light fraction" material (specific gravity < 1.59 g cm−3), which is believed to consist primarily of incompletely decomposed organic matter of plant origin. Differences in amounts of mineralizable organic matter among treatments were attributed to varying frequencies and patterns of crop residue additions. The pronounced effects of crop rotation on the distribution of organic matter among labile and humified organic matter will have a strong impact on soil fertility and may need to be taken into consideration in the development of fertilizer recommendations. It was concluded that inclusion of perennial forages in spring wheat rotations for the purpose of enhancing soil fertility and organic matter levels was not justified under semiarid conditions. Key words: Carbon, nitrogen, mineralization


2021 ◽  
Vol 128 ◽  
pp. 126308
Author(s):  
João William Bossolani ◽  
Carlos Alexandre Costa Crusciol ◽  
José Roberto Portugal ◽  
Luiz Gustavo Moretti ◽  
Ariani Garcia ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 174
Author(s):  
Hui Liu ◽  
Fabio Fiorani ◽  
Ortrud Jäck ◽  
Tino Colombi ◽  
Kerstin A. Nagel ◽  
...  

Plants with improved nutrient use efficiency are needed to maintain and enhance future crop plant production. The aim of this study was to explore candidate traits for pre-breeding to improve nutrient accumulation and early vigor of spring wheat grown at high latitudes. We quantified shoot and root traits together with nutrient accumulation in nine contrasting spring wheat genotypes grown in rhizoboxes for 20 days in a greenhouse. Whole-plant relative growth rate was here correlated with leaf area productivity and plant nitrogen productivity, but not leaf area ratio. Furthermore, the total leaf area was correlated with the accumulation of six macronutrients, and could be suggested as a candidate trait for the pre-breeding towards improved nutrient accumulation and early vigor in wheat to be grown in high-latitude environments. Depending on the nutrient of interest, different root system traits were identified as relevant for their accumulation. Accumulation of nitrogen, potassium, sulfur and calcium was correlated with lateral root length, whilst accumulation of phosphorus and magnesium was correlated with main root length. Therefore, special attention needs to be paid to specific root system traits in the breeding of wheat towards improved nutrient accumulation to counteract the suboptimal uptake of some nutrient elements.


Sign in / Sign up

Export Citation Format

Share Document