scholarly journals Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa

2016 ◽  
Vol 80 (9) ◽  
pp. 1843-1852 ◽  
Author(s):  
Masayuki Kamei ◽  
Kazuhiro Yamashita ◽  
Masakazu Takahashi ◽  
Fumiyasu Fukumori ◽  
Akihiko Ichiishi ◽  
...  
2010 ◽  
Vol 398 (4) ◽  
pp. 765-770 ◽  
Author(s):  
Ashish Kumar ◽  
Keren Scher ◽  
Mala Mukherjee ◽  
Ella Pardovitz-Kedmi ◽  
George V. Sible ◽  
...  

2012 ◽  
Vol 85 (4) ◽  
pp. 716-733 ◽  
Author(s):  
Corinna Richthammer ◽  
Matthias Enseleit ◽  
Eddy Sanchez-Leon ◽  
Sabine März ◽  
Yvonne Heilig ◽  
...  

2018 ◽  
Author(s):  
Monika S. Fischer ◽  
Vincent W. Wu ◽  
Ji E. Lee ◽  
Ronan C. O’Malley ◽  
N. Louise Glass

ABSTRACTMaintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP-Kinase pathways are essential for communication and cell fusion in N. crassa; the Cell Wall Integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross talk between the MAK-1 and MAK-2 pathways, which is likely necessary for oordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAP-Kinase pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, while it is unclear what targets ADV-1. We did RNAseq on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-Affinity Purification sequencing (DAP-seq) for N. crassa. To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1-ADV-1 and MAK-2- PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e42374 ◽  
Author(s):  
Abhiram Maddi ◽  
Anne Dettman ◽  
Ci Fu ◽  
Stephan Seiler ◽  
Stephen J. Free

2019 ◽  
Author(s):  
Maria Augusta Crivelente Horta ◽  
Nils Thieme ◽  
Yuqian Gao ◽  
Kristin E. Burnum-Johnson ◽  
Carrie D. Nicora ◽  
...  

AbstractFungal plant cell wall degradation processes are governed by complex regulatory mechanisms, allowing the organisms to adapt their metabolic program with high specificity to the available substrates. While the uptake of representative plant cell wall mono- and disaccharides is known to induce specific transcriptional and translational responses, the processes related to early signal reception and transduction remain largely unkown. A fast and reversible way of signal transmission are post-translational protein modifications, such as phosphorylations, which could initiate rapid adaptations of the fungal metabolism to a new condition. To elucidate how changes in the initial substrate recognition phase of Neurospora crassa affect the global phosphorylation pattern, phospho-proteomics was performed after a short (2 minutes) induction period with several plant cell wall-related mono- and disaccharides. The MS/MS-based peptide analysis revealed large-scale substrate-specific protein phosphorylation and de-phosphorylations. Using the proteins identified by MS/MS, a protein-protein-interaction (PPI) network was constructed. The variance in phosphorylation of a large number of kinases, phosphatases and transcription factors indicate the participation of many known signaling pathways, including circadian responses, two-component regulatory systems, MAP kinases as well as the cAMP-dependent and heterotrimeric G-protein pathways. Adenylate cyclase, a key component of the cAMP pathway, was identified as a potential hub for carbon source-specific differential protein interactions. In addition, four phosphorylated F-Box proteins were identified, two of which, Fbx-19 and Fbx-22, were found to be involved in carbon catabolite repression responses. Overall, these results provide unprecedented and detailed insights into a so far less well known stage of the fungal response to environmental cues and allow to better elucidate the molecular mechanisms of sensory perception and signal transduction during plant cell wall degradation.


Genetics ◽  
2018 ◽  
Vol 209 (2) ◽  
pp. 489-506 ◽  
Author(s):  
Monika S. Fischer ◽  
Vincent W. Wu ◽  
Ji E. Lee ◽  
Ronan C. O’Malley ◽  
N. Louise Glass

Author(s):  
Karen S. Howard ◽  
H. D. Braymer ◽  
M. D. Socolofsky ◽  
S. A. Milligan

The recently isolated cell wall mutant slime X of Neurospora crassa was prepared for ultrastructural and morphological comparison with the cell wall mutant slime. The purpose of this article is to discuss the methods of preparation for TEM and SEM observations, as well as to make a preliminary comparison of the two mutants.TEM: Cells of the slime mutant were prepared for thin sectioning by the method of Bigger, et al. Slime X cells were prepared in the same manner with the following two exceptions: the cells were embedded in 3% agar prior to fixation and the buffered solutions contained 5% sucrose throughout the procedure.SEM: Two methods were used to prepare mutant and wild type Neurospora for the SEM. First, single colonies of mutant cells and small areas of wild type hyphae were cut from solid media and fixed with OSO4 vapors similar to the procedure used by Harris, et al. with one alteration. The cell-containing agar blocks were dehydrated by immersion in 2,2-dimethoxypropane (DMP).


2018 ◽  
Vol 16 (1) ◽  
pp. 44-53
Author(s):  
Marina Campos Rocha ◽  
Camilla Alves Santos ◽  
Iran Malavazi

Different signaling cascades including the Cell Wall Integrity (CWI), the High Osmolarity Glycerol (HOG) and the Ca2+/calcineurin pathways control the cell wall biosynthesis and remodeling in fungi. Pathogenic fungi, such as Aspergillus fumigatus and Candida albicans, greatly rely on these signaling circuits to cope with different sources of stress, including the cell wall stress evoked by antifungal drugs and the host’s response during infection. Hsp90 has been proposed as an important regulatory protein and an attractive target for antifungal therapy since it stabilizes major effector proteins that act in the CWI, HOG and Ca2+/calcineurin pathways. Data from the human pathogen C. albicans have provided solid evidence that loss-of-function of Hsp90 impairs the evolution of resistance to azoles and echinocandin drugs. In A. fumigatus, Hsp90 is also required for cell wall integrity maintenance, reinforcing a coordinated function of the CWI pathway and this essential molecular chaperone. In this review, we focus on the current information about how Hsp90 impacts the aforementioned signaling pathways and consequently the homeostasis and maintenance of the cell wall, highlighting this cellular event as a key mechanism underlying antifungal therapy based on Hsp90 inhibition.


Sign in / Sign up

Export Citation Format

Share Document