A single seed treatment mediated through reactive oxygen species increases germination, growth performance, and abiotic stress tolerance in Arabidopsis and rice

2020 ◽  
Vol 84 (12) ◽  
pp. 2597-2608
Author(s):  
Md Mostafa Kamal ◽  
Carlos Erazo ◽  
Karen K. Tanino ◽  
Yukio Kawamura ◽  
Jun Kasuga ◽  
...  
2021 ◽  
pp. 217-243
Author(s):  
Ashutosh Sharma ◽  
Pooja Sharma ◽  
Rahul Kumar ◽  
Vikas Sharma ◽  
Renu Bhardwaj ◽  
...  

Author(s):  
Punam Kundu ◽  
Ritu Gill ◽  
Ashima Nehra ◽  
Krishan Kant Sharma ◽  
Mirza Hasanuzzaman ◽  
...  

2017 ◽  
Author(s):  
Hongyun Xu ◽  
Lin He ◽  
Yong Guo ◽  
Xinxin Shi ◽  
Dandan Zang ◽  
...  

AbstractTrihelix transcription factors are characterized by containing a conserved trihelix (helix-loop-helix-loop-helix) domain that bind to GT elements required for light response, play roles in light stress, and also in abiotic stress responses. However, only few of them have been functionally characterised. In the present study, we characterized the function of AST1 (Arabidopsis SIP1 clade Trihelix1) in response to abiotic stress. AST1 shows transcriptional activation activity, and its expression is induced by osmotic and salt stress. The genes regulated by AST1 were identified using qRT-PCR and transcriptome assays. A conserved sequence highly present in the promoters of genes regulated by AST1 was identified, which is bound by AST1, and termed AGAG-box with the sequence [A/G][G/A][A/T]GAGAG. Additionally, AST1 also binds to some GT motifs including GGTAATT, TACAGT, GGTAAAT and GGTAAA, but failed in binding to GTTAC and GGTTAA. Chromatin immunoprecipitation combined with qRT-PCR analysis suggested that AST1 binds to AGAG-box and/or some GT motifs to regulate the expression of stress tolerance genes, resulting in reduced reactive oxygen species, Na+ accumulation, stomatal apertures, lipid peroxidation, cell death and water loss rate, and increased proline content and reactive oxygen species scavenging capability. These physiological changes mediated by AST1 finally improve abiotic stress tolerance.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2537
Author(s):  
Mirza Hasanuzzaman ◽  
Khursheda Parvin ◽  
Kirti Bardhan ◽  
Kamrun Nahar ◽  
Taufika Islam Anee ◽  
...  

Global food security for a growing population with finite resources is often challenged by multiple, simultaneously occurring on-farm abiotic stresses (i.e., drought, salinity, low and high temperature, waterlogging, metal toxicity, etc.) due to climatic uncertainties and variability. Breeding for multiple stress tolerance is a long-term solution, though developing multiple-stress-tolerant crop varieties is still a challenge. Generation of reactive oxygen species in plant cells is a common response under diverse multiple abiotic stresses which play dual role of signaling molecules or damaging agents depending on concentration. Thus, a delicate balance of reactive oxygen species generation under stress may improve crop health, which depends on the natural antioxidant defense system of the plants. Biostimulants represent a promising type of environment-friendly formulation based on natural products that are frequently used exogenously to enhance abiotic stress tolerance. In this review, we illustrate the potential of diverse biostimulants on the activity of the antioxidant defense system of major crop plants under stress conditions and their other roles in the management of abiotic stresses. Biostimulants have the potential to overcome oxidative stress, though their wider applicability is tightly regulated by dose, crop growth stage, variety and type of biostimulants. However, these limitations can be overcome with the understanding of biostimulants’ interaction with ROS signaling and the antioxidant defense system of the plants.


Sign in / Sign up

Export Citation Format

Share Document