Noncorrelative relation between in vitro and in vivo for plasmid DNA transfection by succinylated polyethylenimine muscular injection

Author(s):  
Yuki Kobayashi ◽  
Kei Nirasawa ◽  
Yoichi Negishi ◽  
Shoichiro Asayama
Keyword(s):  
1999 ◽  
Vol 10 (14) ◽  
pp. 2407-2417 ◽  
Author(s):  
Edward J. Dunphy ◽  
Rebecca A. Redman ◽  
Hans Herweijer ◽  
Timothy P. Cripe

2018 ◽  
Vol 19 (11) ◽  
pp. 3452 ◽  
Author(s):  
Shingo Nakamura ◽  
Masayuki Ishihara ◽  
Satoshi Watanabe ◽  
Naoko Ando ◽  
Masato Ohtsuka ◽  
...  

Hydrodynamics-based gene delivery (HGD) is an efficient method for transfecting plasmid DNA into hepatocytes in vivo. However, the resulting gene expression is transient, and occurs in a non-tissue specific manner. The piggyBac (PB) transposon system allows chromosomal integration of a transgene in vitro. This study aimed to achieve long-term in vivo expression of a transgene by performing hepatocyte-specific chromosomal integration of the transgene using PB and HGD. Using this approach, we generated a novel mouse model for a hepatic disorder. A distinct signal from the reporter plasmid DNA was discernible in the murine liver approximately two months after the administration of PB transposons carrying a reporter gene. Then, to induce the hepatic disorder, we first administered mice with a PB transposon carrying a CETD unit (loxP-flanked stop cassette, diphtheria toxin-A chain gene, and poly(A) sites), and then with a plasmid expressing the Cre recombinase under the control of a liver-specific promoter. We showed that this system can be used for in situ manipulation and analysis of hepatocyte function in vivo in non-transgenic (Tg) animals.


2021 ◽  
Vol 14 (9) ◽  
pp. 841
Author(s):  
Jian-Ming Lü ◽  
Zhengdong Liang ◽  
Dongliang Liu ◽  
Bin Zhan ◽  
Qizhi Yao ◽  
...  

We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.


2011 ◽  
Vol 21 ◽  
pp. 230-242 ◽  
Author(s):  
F Wegman ◽  
◽  
A Bijenhof ◽  
L Schuijff ◽  
FC Öner ◽  
...  

2020 ◽  
Author(s):  
Robert L. Kruse ◽  
Xavier Legras ◽  
Mercedes Barzi

AbstractNew therapies against hepatitis B virus (HBV) require the elimination of covalently closed circular DNA (cccDNA), the episomal HBV genome. HBV plasmids containing an overlength 1.3-mer genome and bacterial backbone (pHBV1.3) are used in many different models, but do not replicate the unique features of cccDNA. Since the stable cccDNA pool is a barrier to HBV eradication in patients, we developed a recombinant circular HBV genome (rcccDNA) to mimic the cccDNA using Cre/LoxP technology. We validated four LoxP insertion sites into the HBV genome using hydrodynamic tail vein injection into murine liver, demonstrating high levels of HBV surface antigen (HBsAg) and HBV DNA expression with rcccDNA formation. HBsAg expression from rcccDNA was >30,000 ng/mL over 78 days, while HBsAg-expression from pHBV1.3 plasmid DNA declined from 2,753 ng/mL to 131 ng/mL over that time in immunodeficient mice (P<0.001), reflective of plasmid DNA silencing. We then cloned Cre-recombinase in cis on the LoxP-HBV plasmids, achieving plasmid stability in bacteria with intron insertion into Cre and demonstrating rcccDNA formation after transfection in vitro and in vivo. These cis-Cre/LoxP-HBV plasmids were then used to create HBx-mutant and GFP reporter plasmids to further probe cccDNA biology and antiviral strategies against cccDNA. Overall, we believe these auto-generating rcccDNA plasmids will be of great value to model cccDNA for testing new therapies against HBV infection.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Syahril Abdullah ◽  
Wai Yeng Wendy-Yeo ◽  
Hossein Hosseinkhani ◽  
Mohsen Hosseinkhani ◽  
Ehab Masrawa ◽  
...  

A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines andin vivothrough systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery.In vitrostudies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.


2005 ◽  
Vol 12 (1) ◽  
pp. 164-170 ◽  
Author(s):  
John R. Greenland ◽  
Huining Liu ◽  
David Berry ◽  
Daniel G. Anderson ◽  
Woong-Ki Kim ◽  
...  

2007 ◽  
Vol 405 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Jørgen de Jonge ◽  
Johanna M. Leenhouts ◽  
Marijke Holtrop ◽  
Pieter Schoen ◽  
Peter Scherrer ◽  
...  

Reconstituted influenza virosomes (virus membrane envelopes) have been used previously to deliver pDNA (plasmid DNA) bound to their external surface to a variety of target cells. Although high transfection efficiencies can be obtained with these complexes in vitro, the virosome-associated DNA is readily accessible to nucleases and could therefore be prone to rapid degradation under in vivo conditions. In the present study, we show a new method for the production of DNA–virosomes resulting in complete protection of the DNA from nucleases. This method relies on the use of the short-chain phospholipid DCPC (dicaproylphosphatidylcholine) for solubilization of the viral membrane. The solubilized viral membrane components are mixed with pDNA and cationic lipid. Reconstitution of the viral envelopes and simultaneous encapsulation of pDNA is achieved by removal of the DCPC from the mixture through dialysis. Analysis by linear sucrose density-gradient centrifugation revealed that protein, phospholipid and pDNA physically associated to particles, which appeared as vesicles with spike proteins inserted in their membranes when analysed by electron microscopy. The DNA–virosomes retained the membrane fusion properties of the native influenza virus. The virosome-associated pDNA was completely protected from degradation by nucleases, providing evidence for the DNA being highly condensed and encapsulated in the lumen of the virosomes. DNA–virosomes, containing reporter gene constructs, transfected a variety of cell lines, with efficiencies approaching 90%. Transfection was completely dependent on the fusogenic properties of the viral spike protein haemagglutinin. Thus, DNA–virosomes prepared by the new procedure are highly efficient vehicles for DNA delivery, offering the advantage of complete DNA protection, which is especially important for future in vivo applications.


Biomaterials ◽  
2009 ◽  
Vol 30 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Jenifer Blacklock ◽  
Ye-Zi You ◽  
Qing-Hui Zhou ◽  
Guangzhao Mao ◽  
David Oupický
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document