active targeting
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 161)

H-INDEX

49
(FIVE YEARS 13)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jingyue Wang ◽  
Tong Zhou ◽  
Ying Liu ◽  
Shuangmin Chen ◽  
Zhenxiang Yu

Lung cancer is one of the malignant tumors that has seen the most rapid growth in terms of morbidity and mortality in recent years, posing the biggest threat to people’s health and lives. In recent years, the nano-drug loading system has made significant progress in the detection, diagnosis, and treatment of lung cancer. Nanomaterials are used to specifically target tumor tissue to minimize therapeutic adverse effects and increase bioavailability. It is achieved primarily through two mechanisms: passive targeting, which entails the use of enhanced penetration and retention (EPR) effect, and active targeting, which entails the loading recognition ligands for tumor marker molecules onto nanomaterials. However, it has been demonstrated that the EPR effect is effective in rodents but not in humans. Taking this into consideration, researchers paid significant attention to the active targeting nano-drug loading system. Additionally, it has been demonstrated to have a higher affinity and specificity for tumor cells. In this review, it describes the development of research into active targeted nano-drug delivery systems for lung cancer treatment from the receptors’ or targets’ perspective. We anticipate that this study will help biomedical researchers use nanoparticles (NPs) to treat lung cancer by providing more and novel drug delivery strategies or solid ligands.


2021 ◽  
pp. 2106607
Author(s):  
Karen Alt ◽  
Francesco Carraro ◽  
Edwina Jap ◽  
Mercedes Linares‐Moreau ◽  
Raffaele Riccò ◽  
...  

2021 ◽  
Vol 6 (12) ◽  
pp. 4402-4414
Author(s):  
Yueyue Fan ◽  
Yuexin Cui ◽  
Wenyan Hao ◽  
Mengyu Chen ◽  
Qianqian Liu ◽  
...  

2021 ◽  
Vol 22 (23) ◽  
pp. 13011
Author(s):  
Andrey S. Drozdov ◽  
Petr I. Nikitin ◽  
Julian M. Rozenberg

Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.


2021 ◽  
pp. 100032
Author(s):  
Christina Barth ◽  
Hendrik Spreen ◽  
Dennis Mulac ◽  
Lucas Keuter ◽  
Matthias Behrens ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 14-22
Author(s):  
Dexuan Xiao ◽  
Ronghui Zhou

Cancer is the disease with the highest mortality rate, which poses a great threat to people’s lives. Cancer caused approximately 3.4 million death worldwide annually. Surgery, chemotherapy and radiotherapy are the main therapeutic methods in clinical practice. However, surgery is only suitable for patients with early-stage cancers, and chemotherapy as well as radiotherapy have various side effects, both of which limit the application of available therapeutic methods. In 1965, liposome was firstly developed to form new drug delivery systems given the unique properties of nanoparticles, such as enhanced permeability and retention effect. During the last 5 decades, liposome has been widely used for the purpose of anticancer drug delivery, and several advances have been made regarding liposomal technology, including long-circulating liposomes, active targeting liposomes and triggered release liposomes, while problems exist all along. This review introduced the advances as well as the problems during the development of liposomal nanosystems for cancer therapy in recent years.


Author(s):  
Lama A. Helmy ◽  
Mohammed Abdel-Halim ◽  
Raghda Hassan ◽  
Aya Sebak ◽  
Haithem A.M. Farghali ◽  
...  

2021 ◽  
Author(s):  
Azhoma Gumala ◽  
Sutriyo Sutriyo

Objective Active targeting strategy in chemotherapy drug delivery aims to improve the therapeutic outcomes and minimise the side effects of chemotherapeutics. This review discusses utilising ligands attached to gold nanoparticles (AuNPs) along with several specific ligands attached to AuNPs for active targeting in chemotherapy drug delivery. Key finding Antibodies, peptides, vitamins, DNA, polysaccharides, aptamers, and hormones showed active-targeting abilities as ligands attached to AuNPs. Active-targeting AuNPs enhanced cellular uptake and cytotoxicity in a specific cancer cell in vitro while reducing tumor growth in vivo by improving the photothermal, photodynamic and chemotherapy effects. Active-targeting ligands increased the internalization of AuNPs loaded onto the specific tumour site and minimised the accumulation in the normal site. Conclusion AuNPs with active-targeting ligands such as antibodies, peptides, vitamins, DNA polysaccharides, aptamers, and hormones can improve the therapeutic outcomes of chemotherapeutics and can attenuate the toxicity effect in normal cells. For further research and development, researchers should be addressing AuNP characterization, drug–ligand disposition, active-targeting AuNP quantification, and target-AuNPs pertinence concerning the desired therapeutic outcomes.


Sign in / Sign up

Export Citation Format

Share Document