scholarly journals Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique

2015 ◽  
Vol 62 (20) ◽  
pp. 1732-1738 ◽  
Author(s):  
Marco López ◽  
Helmuth Hofer ◽  
Stefan Kück
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ian DSouza ◽  
Jean-Philippe Bourgoin ◽  
Brendon L. Higgins ◽  
Jin Gyu Lim ◽  
Ramy Tannous ◽  
...  

AbstractAvalanche photodiodes (APDs) are well-suited for single-photon detection on quantum communication satellites as they are a mature technology with high detection efficiency without requiring cryogenic cooling. They are, however, prone to significantly increased thermal noise caused by in-orbit radiation damage. Previous work demonstrated that a one-time application of thermal annealing reduces radiation-damage-induced APD thermal noise. Here we examine the effect of cyclical proton irradiation and thermal annealing. We use an accelerated testing environment which emulates a realistic two-year operating profile of a satellite in low-Earth-orbit. We show that repeated thermal annealing is effective at maintaining thermal noise of silicon APDs within a range suitable for quantum key distribution throughout the nominal mission life, and beyond. We examine two strategies—annealing at a fixed period of time, and annealing only when the thermal noise exceeds a pre-defined limit. We find both strategies exhibit similar thermal noise at end-of-life, with a slight overall advantage to annealing conditionally. We also observe that afterpulsing probability of the detector increases with cumulative proton irradiation. This knowledge helps guide design and tasking decisions for future space-borne quantum communication applications.


2016 ◽  
Vol 705 ◽  
pp. 168-173
Author(s):  
Nan Zhou ◽  
Miao Qing Zhuang ◽  
Hao Liang

Avalanche photodiodes are crucial materials for single-photon detection. Single-photon detectors are indispensable components for optical experiments and applications such as quantum information processing and quantum communications, both of which demand high single-photon detection efficiency. The authors have first developed a silicon single-photon avalanche detector in near infrared spectrum with 1 MHz square wave gating and tested its performance. Then we have also designed a high-speed and high-efficiency silicon single-photon detection system with 152 MHz sine wave gating and improved its single-photon detection efficiency to 77.48%.


Sign in / Sign up

Export Citation Format

Share Document