dark count
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Kai Yu ◽  
Chun Hui Zhang ◽  
Xing Yu Zhou ◽  
Qin Wang

Abstract In quantum key distribution (QKD), passive decoy-state method can simplify the intensity modulation and reduce some of side-channel information leakage and modulation errors. It is usually implemented with a heralded single-photon source. In [Physical Review A 96, 032312 (2016)], a novel passive decoy-state method is proposed by Wang et al., which uses two local detectors to generate more detection events for tightly estimating channel parameters. However, in original scheme, the two local detectors are assumed to be identical, including same detection efficiency and dark count rate, which is often not satisfied in realistic experiment. Therefore, in this paper, we construct a model for this passive decoy-state QKD scheme with two mismatched detectors and explore the effect on QKD performance with certain parameter. We also take the finite-size effect into consideration, showing the performance with statistical fluctuations. The results show that the efficiencies of local detectors affect the key rate more obviously than dark count rates. Our work provides a reference value for realistic QKD system.


2021 ◽  
Vol 16 (12) ◽  
pp. P12032
Author(s):  
Y.A. Melikyan ◽  
M. Slupecki ◽  
I.G. Bearden ◽  
J.R. Crowley ◽  
D.A. Finogeev ◽  
...  

Abstract A systematic investigation of Planacon MCP-PMTs was performed using 64 XP85002/ FIT-Q photosensors. These devices are equipped with microchannel plates of reduced resistance. Results of a study of their gain stability over time and saturation level in terms of the average anode current are presented. This information allows one to determine the lower limit of the MCP resistance for stable Planacon operation. The spread of the electron multiplication characteristics for the entire production batch is also presented, indicating the remarkably low voltage requirements of these MCP-PMTs. Detection efficiency and noise characteristics, such as dark count rate and afterpulsing level, are also reviewed.


Author(s):  
Mathieu Sicre ◽  
Megan Agnew ◽  
Christel Buj ◽  
Jean Coignus ◽  
Dominique Golanski ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5287
Author(s):  
Hiwa Mahmoudi ◽  
Michael Hofbauer ◽  
Bernhard Goll ◽  
Horst Zimmermann

Being ready-to-detect over a certain portion of time makes the time-gated single-photon avalanche diode (SPAD) an attractive candidate for low-noise photon-counting applications. A careful SPAD noise and performance characterization, however, is critical to avoid time-consuming experimental optimization and redesign iterations for such applications. Here, we present an extensive empirical study of the breakdown voltage, as well as the dark-count and afterpulsing noise mechanisms for a fully integrated time-gated SPAD detector in 0.35-μm CMOS based on experimental data acquired in a dark condition. An “effective” SPAD breakdown voltage is introduced to enable efficient characterization and modeling of the dark-count and afterpulsing probabilities with respect to the excess bias voltage and the gating duration time. The presented breakdown and noise models will allow for accurate modeling and optimization of SPAD-based detector designs, where the SPAD noise can impose severe trade-offs with speed and sensitivity as is shown via an example.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 988
Author(s):  
Roderick D. Cochran ◽  
Daniel J. Gauthier

Quantum key distribution (QKD) systems provide a method for two users to exchange a provably secure key. Synchronizing the users’ clocks is an essential step before a secure key can be distilled. Qubit-based synchronization protocols directly use the transmitted quantum states to achieve synchronization and thus avoid the need for additional classical synchronization hardware. Previous qubit-based synchronization protocols sacrifice secure key either directly or indirectly, and all known qubit-based synchronization protocols do not efficiently use all publicly available information published by the users. Here, we introduce a Bayesian probabilistic algorithm that incorporates all published information to efficiently find the clock offset without sacrificing any secure key. Additionally, the output of the algorithm is a probability, which allows us to quantify our confidence in the synchronization. For demonstration purposes, we present a model system with accompanying simulations of an efficient three-state BB84 prepare-and-measure protocol with decoy states. We use our algorithm to exploit the correlations between Alice’s published basis and mean photon number choices and Bob’s measurement outcomes to probabilistically determine the most likely clock offset. We find that we can achieve a 95 percent synchronization confidence in only 4140 communication bin widths, meaning we can tolerate clock drift approaching 1 part in 4140 in this example when simulating this system with a dark count probability per communication bin width of 8×10−4 and a received mean photon number of 0.01.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 554
Author(s):  
Maurizio Benfatto ◽  
Elisabetta Pace ◽  
Catalina Curceanu ◽  
Alessandro Scordo ◽  
Alberto Clozza ◽  
...  

We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.


2021 ◽  
Vol 16 (4) ◽  
pp. 546-551
Author(s):  
Mei-Ling Zeng ◽  
Yang Wang ◽  
Xiang-Liang Jin ◽  
Yan Peng ◽  
Jun Luo

Single-photon avalanche diodes (SPADs) can detect extremely weak optical signals and are mostly used in single-photon imaging, quantum communication, medical detection, and other fields. In this paper, a low dark count rate (DCR) single-photon avalanche diode device is designed based on the 180 nm standard BCD process. The device has a good response in the 450~750 nm spectral range. The active area of the device adopts a P+/N-Well structure with a diameter of 20 µm. The low-doped N-Well increases the thickness of the depletion region and can effectively improve the detection sensitivity; the P-Well acts as a guard ring to prevent premature breakdown of the PN junction edge; the isolation effect of the deep N-Well reduces the noise coupling of the substrate. Use the TCAD simulation tool to verify the SPAD’s basic principles. The experimental test results show that the avalanche breakdown voltage of the device is 11.7 V. The dark count rate is only 123 Hz when the over-bias voltage is 1 V, and the peak photon detection efficiency (PDE) reaches 37.5% at the wavelength of 500 nm under the 0.5 V over-bias voltage. PDE exceeds 30% in the range of 460~640 nm spectral range, which has a good response in the blue band. The SPAD device provides certain design ideas for the research of fluorescence detectors.


Author(s):  
Tong Chu ◽  
Tianqi Zhao ◽  
Guilan Feng ◽  
Chunlan Lin ◽  
Jinlv Pan ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fabian Beutel ◽  
Helge Gehring ◽  
Martin A. Wolff ◽  
Carsten Schuck ◽  
Wolfram Pernice

AbstractQuantum key distribution (QKD) can greatly benefit from photonic integration, which enables implementing low-loss, alignment-free, and scalable photonic circuitry. At the same time, superconducting nanowire single-photon detectors (SNSPD) are an ideal detector technology for QKD due to their high efficiency, low dark-count rate, and low jitter. We present a QKD receiver chip featuring the full photonic circuitry needed for different time-based protocols, including single-photon detectors. By utilizing waveguide-integrated SNSPDs we achieve low dead times together with low dark-count rates and demonstrate a QKD experiment at 2.6 GHz clock rate, yielding secret-key rates of 2.5 Mbit/s for low channel attenuations of 2.5 dB without detector saturation. Due to the broadband 3D polymer couplers the reciver chip can be operated at a wide wavelength range in the telecom band, thus paving the way for highly parallelized wavelength-division multiplexing implementations.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lodovico Ratti ◽  
Paolo Brogi ◽  
Gianmaria Collazuol ◽  
Gian-Franco Dalla Betta ◽  
Pier Simone Marrocchesi ◽  
...  

This paper reports the characterization of SPAD arrays fabricated in a 150 nm CMOS technology in view of applications to the detection of charged particles. The test vehicle contains SPADs with different active area and operated with different quenching techniques, either passive or active. The set of devices under test (DUTs) consists of single-tier chips, about 30 mm2 in area, with dual-tier structures where two chips are face-to-face bump bonded to each other. In the dual-layer structure obtained in this way, the coincidence signal between overlapping SPAD pairs is read out, with a beneficial impact on the dark count noise performance. The DUT characterization was mainly focused on studying the breakdown voltage in the single-layer arrays and the dark count rate (DCR), measured in different working conditions, in both the single- and the dual-layer structures. Comparison between the DCR performance of the two configurations clearly emphasizes the advantage of the coincidence readout architecture.


Sign in / Sign up

Export Citation Format

Share Document