scholarly journals Magnetic field fluctuations analysis for the ion trap implementation of the quantum Rabi model in the deep strong coupling regime

2017 ◽  
Vol 65 (5-6) ◽  
pp. 745-753 ◽  
Author(s):  
Ricardo Puebla ◽  
Jorge Casanova ◽  
Martin B. Plenio
2014 ◽  
Vol 12 (07n08) ◽  
pp. 1560010 ◽  
Author(s):  
Vittorio Penna ◽  
Francesco A. Raffa

We present a perturbative analysis of a Rabi model where the coupling between the quantized single-mode electromagnetic field and the two-level atom depends on the field intensity. Upon modeling the matter–radiation coupling through the Holstein–Primakoff realization of algebra su(1,1), we evaluate first- and second-order eigenenergies and eigenstates both in the weak-coupling regime (atom transition frequency smaller than the coupling strength) and in the strong-coupling regime. In the first case, among various effects, we observe a quadratic dependence on the photon number of energy eigenvalues and the possible formation of level doublets. In the strong-coupling case, the perturbative analysis becomes considerably complex due to the su(1,1)-valued form of the unperturbed Hamiltonian. The critical condition for the transition to an almost continuous spectrum is found in terms of the model parameters.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Jochen Braumüller ◽  
Michael Marthaler ◽  
Andre Schneider ◽  
Alexander Stehli ◽  
Hannes Rotzinger ◽  
...  

2018 ◽  
Vol 27 (5) ◽  
pp. 054219 ◽  
Author(s):  
Bin-Bin Mao ◽  
Maoxin Liu ◽  
Wei Wu ◽  
Liangsheng Li ◽  
Zu-Jian Ying ◽  
...  

1996 ◽  
Vol 40 (1-8) ◽  
pp. 497-500 ◽  
Author(s):  
J Tignon ◽  
P Voisin ◽  
J Wainstain ◽  
C Delalande ◽  
M Voos ◽  
...  

2020 ◽  
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Ziqing Wang ◽  
Milan Zachrdla ◽  
Alexandra V. Yurkovskaya ◽  
...  

Abstract. Strong coupling of nuclear spins, which is achieved when their scalar coupling 2πJ is greater than or comparable to the difference δω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong-coupling regime can be achieved when the external magnetic field is sufficiently low, as δω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin-spin interactions alter the δω value. The experimental method that we use is two-field NMR (Nuclear Magnetic Resonance), exploiting sample shuttling between a high field, at which NMR spectra are acquired, and low field, where strong couplings are expected, at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of non-adiabatic passage through a level anti-crossing and study their evolution at low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with an 13C labelled amino acid clearly show that the coherent polarization transfer at low field is pronounced in the 13C-spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin-spin interactions suppress the strong coupling regime even when the external field is low. A theoretical model is presented, which can model the reported experimental results.


2020 ◽  
Vol 1 (2) ◽  
pp. 237-246
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Ziqing Wang ◽  
Milan Zachrdla ◽  
Alexandra V. Yurkovskaya ◽  
...  

Abstract. Strong coupling of nuclear spins, which is achieved when their scalar coupling 2πJ is greater than or comparable to the difference Δω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong coupling regime can be achieved when the external magnetic field is sufficiently low, as Δω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin–spin interactions alter the Δω value. The experimental method that we use is two-field nuclear magnetic resonance (NMR), exploiting sample shuttling between the high field, at which NMR spectra are acquired, and the low field, where strong couplings are expected and at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of a nonadiabatic passage through a level anticrossing and study their evolution at the low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with a 13C-labeled amino acid clearly show that the coherent polarization transfer at the low field is pronounced in the 13C spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin–spin interactions suppress the strong coupling regime, even when the external field is low. A theoretical model is presented, which can model the reported experimental results.


Sign in / Sign up

Export Citation Format

Share Document