Chemical composition of welding aerosol in manual coated electrode arc welding

2011 ◽  
Vol 25 (9) ◽  
pp. 719-721 ◽  
Author(s):  
D. P. Il'yashchenko ◽  
E. A. Zernin ◽  
S. V. Shadskii
2018 ◽  
Vol 69 (7) ◽  
pp. 1826-1829
Author(s):  
Claudiu Babis ◽  
Augustin Semenescu ◽  
Oana Roxana Chivu ◽  
Maria Alina Gligor ◽  
Gabriel Iacobescu ◽  
...  

The occupational risk assessment of a machine building company must cover each activity and workstation, taking into account each component of the production system (work system), each workload, work equipment and the work environment. This assessment is an extremely complicated and complex issue since the production system of such an enterprise is particularly complex and complicated. Welding assembly is a highly polluting technology process, especially of the atmosphere and soil. The formation of gases in the welding process is the result of burning of the electrodes, powders, forming the molten metal bath and making the weld seam. Welding operators are exposed to smoke and toxic gases resulting from the welding process, which can in many cases be hazardous to health. Many acute intoxications that may be caused by excessive exposure to or short exposure to smoke and gas resulting from the welding process have been studied over time. In the paper are presented the elements of risk related to the welding process and the most widespread occupational diseases that can occur in the ranges of the welding operators. The following are presented the noxious emissions from welding and are determined by a practical method the emission of noxious at welding deposition of a welding sample, using the manual arc welding process with coated electrode.


2015 ◽  
Vol 770 ◽  
pp. 28-33 ◽  
Author(s):  
M.A. Kuznetsov ◽  
Svetlana A. Barannikova ◽  
Evgeniy A. Zernin ◽  
A.V. Filonov ◽  
D.S. Kartcev

The effect on the deposited metal structure of nanostructured modifiers introduced into the weldpool has been studied. Methods have been developed for determining the concentration of nanostructured powders of tungsten, molybdenum and Al2O3 in protective gas and for defining their optimal concentration. The influence of nanopowders on the structure of deposited metal was examined in consumable electrode arc welding employing the austenitic steel (chemical composition: C – 0,12%, Cr – 18%, Ni – 10%,Ti – 1%) as deposit and 1.2-mm welding wire manufactured from the austenitic steel (chemical composition: C – 0,12%, Cr – 18%, Ni – 9%,Ti – 1%). Addition of nanostructured powders of tungsten, molybdenum and Al2O3 to the weldpool has shown positive effect on the structure of metal in arc welding. It is shown that introducing the powders decreases dendrite size and leads to the formation of a more equilibrium microstructure of the weld.


Author(s):  
V.A. Berezina ◽  
V.V. Ovchinnikov ◽  
E.V. Luk'yanenko

The results of technological features for friction stir welding of butt joints of sheet blanks with thickness of 3 mm made of casting aluminum V AL8 alloy with wrought magnalium group 1565chN2 and AMg6M alloys are presented. It is established that the time resistance of the joints depends on the location of the welded alloys relative to the direction of tool rotation during friction stir welding. The ultimate strength of welded joints of VAL8 alloy with 1565chN2 and AMg6 alloys in automatic argon-arc welding is 0.82...0.84 of the ultimate tensile strength of VAL8 alloy. The grain size in the stir zone practically does not depend on the initial grain size in the alloys to be joined. The destruction of the joints made of VAL8 + 1565chH2 alloys under cyclic loading has multi-focal character and is initiated from irregularities on the surface of the weld. The discrete nature of the change in the chemical composition of the weld metal along the axis of the weld is revealed. The weld is formed by alternating strips of connected alloys with width of 30...90 microns.


2018 ◽  
Vol 2 (3) ◽  
pp. 109-117 ◽  
Author(s):  
V. I. Vishnyakov ◽  
S. A. Kiro ◽  
M. V. Oprya ◽  
O. D. Chursina ◽  
A. A. Ennan

2013 ◽  
Vol 379 ◽  
pp. 195-198 ◽  
Author(s):  
A.G. Krampit ◽  
N.Yu Krampit ◽  
M.A. Krampit

Research results of the weld chemical composition and mechanical properties at pulsed arc welding are discussed. It is established that the pulsed power supply favours mechanical properties of the welded joint.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5445
Author(s):  
Artur Czupryński

In this article, the results of research on the metal-mineral-type abrasive wear of a wear-resistant plate made by a tubular electrode with a metallic core and an innovative chemical composition using the manual metal arc hardfacing process were presented. The properties of the new layer were compared to the results of eleven wear plates manufactured by global suppliers, including flux-cored arc welding gas-shielded (FCAW-GS, Deposition Process Reference Number: 138), flux-cored arc welding self-shielded (FCAW-SS, Deposition Process Reference Number: 114), automated hardfacing, and manual metal arc welding (MMAW, Deposition Process Reference Number: 111) hardfacing T Fe15 and T Fe16 alloys, according to EN 14700:2014. Characterization of the hardfaced layers was achieved by using hardness tests, optical microscopy, confocal microscopy, scanning electron microscopy, and EDS (Energy Dispersive Spectroscopy) and X-ray diffraction analyses. Based on wear resistance tests in laboratory conditions, in accordance with ASTM G65-00: Procedure A, and surface layer hardness tests, in accordance with PN-EN ISO 6508-1, the wear plates most suitable for use in metal-mineral conditions were chosen. The results demonstrated the high metal-mineral abrasive wear resistance of the deposit weld metal produced by the new covered tubular electrode. The tubular electrode demonstrated a high linear correlation between the surface wear resistance and the hardness of the metal matrix of the tested abrasive wear plates. In addition to hardness, size, shape, the dispersion of strengthening phases, and the base metal content, depending on hardfacing technology and technological parameters, impact wear resistance is represented by volumetric loss caused by effect-free or constrained dry abrasive medium contact. The presented results can be used in machine part material selection and wear planning for applications in inspection, conservation, and regeneration interval determination. The obtained results will be applied in a real-time wear rate prediction system based on the measurement of the working parameters.


Sign in / Sign up

Export Citation Format

Share Document