scholarly journals Placental expression of endoglin, placental growth factor, leptin, and hypoxia-inducible factor-1 in diabetic pregnancy and pre-eclampsia

2021 ◽  
Vol 37 (sup1) ◽  
pp. 35-39
Author(s):  
Roman V. Kapustin ◽  
Ekaterina V. Kopteeva ◽  
Elena N. Alekseenkova ◽  
Tatyana G. Tral ◽  
Gulrukhsor Kh. Tolibova ◽  
...  
Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Man-Ping Huang ◽  
Shan-Zhi Gu ◽  
Bin Huang ◽  
Guo-Wen Li ◽  
Zheng-Ping Xiong ◽  
...  

<b><i>Introduction:</i></b> Intrahepatic cholangiocarcinoma (ICC), which is difficult to diagnose and is usually fatal due to its late clinical presentation and a lack of effective treatment, has risen over the past decades but without much improvement in prognosis. <b><i>Objective:</i></b> The study aimed to investigate the role of apatinib that targets vascular endothelial growth factor receptor-2 (VEGFR2) in ICC. <b><i>Methods:</i></b> MTT assays, cell scratch assays, and tube formation assays were used to assess the effect of apatinib on human ICC cell line (HuCCT-1) and RBE cells proliferation, migration, and angiogenic capacity, respectively. Expression of vascular endothelial growth factor (VEGF), VEGFR2, signal transducer and activator of transcription factor 3 (STAT3), pSTAT3, and hypoxia inducible factor 1 subunit alpha (HIF-1α) pathway proteins was assessed using Western blotting and mRNA expression analysis in HuCCT-1 was performed using RT-qPCR assays. The pcDNA 3.1(-)-VEGFR2 and pcDNA 3.1(-)-HIF-1α were transfected into HuCCT-1 and RBE cells using Lipofectamine 2,000 to obtain overexpressed HuCCT-1 and RBE cells. <b><i>Results:</i></b> We found that apatinib-inhibited proliferation, migration, and angiogenesis of HuCCT-1 and RBE cells in vitro in a dose-dependent manner. We also proved that apatinib effectively inhibits angiogenesis in tumor cells by blocking the expression of VEGF and VEGFR2 in these cells. In addition, we demonstrated that apatinib regulates the expression of STAT3 phosphorylation by inhibiting VEGFR2. Finally, we showed that apatinib regulates ICC angiogenesis and HIF-1α/VEGF expression via STAT3. <b><i>Conclusions:</i></b> Based on the above findings, we conclude that apatinib inhibits HuCCT-1 and RBE cell proliferation, migration, and tumor angiogenesis by inhibiting the VEGFR2/STAT3/HIF-1α axis signaling pathway. Apatinib can be a promising drug for ICC-targeted molecular therapy.


Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Hideo Kimura ◽  
Alessandro Weisz ◽  
Yukiko Kurashima ◽  
Kouichi Hashimoto ◽  
Tsutomu Ogura ◽  
...  

Abstract Nitric oxide (NO) regulates production of vascular endothelial growth factor (VEGF) by normal and transformed cells. We demonstrate that NO donors may up-regulate the activity of the human VEGF promoter in normoxic human glioblastoma and hepatoma cells independent of a cyclic guanosine monophosphate–mediated pathway. Deletion and mutation analysis of the VEGF promoter indicates that the NO-responsive cis-elements are the hypoxia-inducible factor-1 (HIF-1) binding site and an adjacent ancillary sequence that is located immediately downstream within the hypoxia-response element (HRE). This work demonstrates that the HRE of this promoter is the primary target of NO. In addition, VEGF gene regulation by NO, as well as by hypoxia, is potentiated by the AP-1 element of the gene. Our study also reveals that NO and hypoxia induce an increase in HIF-1 binding activity and HIF-1 protein levels, both in the nucleus and the whole cell. These results suggest that there are common features of the NO and hypoxic pathways of VEGF induction, while in part, NO mediates gene transcription by a mechanism distinct from hypoxia. This is demonstrated by a difference in sensitivity to guanylate cyclase inhibitors and a different pattern of HIF-1 binding. These results show that there is a primary role for NO in the control of VEGF synthesis and in cell adaptations to hypoxia. (Blood. 2000;95:189-197)


2016 ◽  
Vol 64 (2) ◽  
pp. 361-363 ◽  
Author(s):  
Gregg L Semenza

When tissue perfusion is impaired, the resulting reduction in O2 availability activates hypoxia-inducible factor 1 (HIF-1), which mediates increased transcription of genes encoding multiple angiogenic factors including vascular endothelial growth factor, stromal-derived factor 1, placental growth factor, and angiopoietins, leading to the mobilization of bone marrow-derived angiogenic cells, increased angiogenesis, and arterial remodeling. These HIF- 1-dependent responses are impaired by aging or loss of function mutations at the locus encoding the HIF-1α subunit. in mouse models of limb ischemia and lung transplant rejection, the augmentation of HIF-1 activity by gene therapy or chemical inducers was associated with maintenance of tissue perfusion that prevented limb amputation and allograft rejection, respectively. Thus, targeting HIF-1 may be of therapeutic benefit in these clinical contexts and others in which impaired tissue perfusion plays a role in disease pathogenesis.


2005 ◽  
Vol 93 (06) ◽  
pp. 1176-1184 ◽  
Author(s):  
Ulrike Möller ◽  
Stephan Herzig ◽  
Trine Fink ◽  
Vladimir Zachar ◽  
Peter Ebbesen ◽  
...  

SummaryInsulin-like growth factor 1 (IGF-1) and plasminogen activator inhibitor-1 (PAI-1) appear to play a crucial role in a number of processes associated with growth and tissue remodelling. IGF-1 was shown to enhance PAI-1 expression in primary hepatocytes and HepG2 hepatoma cells, but the molecular mechanisms underlying this effect have not been fully elucidated. In this study, we investigated the transcriptional mechanism and the signaling pathway by which IGF-1 mediates induction of PAI-1 expression in HepG2 cells. By using human PAI-1 promoter reporter gene assays we found that mutation of the hypoxia responsive element (HRE), which could bind hypoxia-inducible factor-1 (HIF-1), nearly abolished the induction by IGF-1. We found that IGF-1-induced up-regulation of PAI-1 expression was associated with activation of HIF-1α. Furthermore, IGF-1 enhanced HIF-1α protein levels and HIF-1 DNA-binding to each HRE, E4 and E5 as shown by EMSA. Mutation of the E-boxes, E4 and E5, did not affect the IGF-1-dependent induction of PAI-1 promoter constructs under normoxia but abolished the effect of IGF-1 under hypoxia. Inhibition of either the PI3K by LY294002 or ERK1/2 by U0126 reduced HIF-1α protein levels while both inhibitors together completely abolished the IGF-1 effect on HIF-1α. Remarkably, transfection of HepG2 cells with vectors expressing a dominant-negative PDK1 or the PKB inhibitor, TRB3, did not influence while dominant-negative Raf inhibited the IGF-1 effect on HIF-1α. Thus, IGF-1 activates human PAI-1 gene expression through activation of the PI3-kinase and ERK1/2 via HIF-1α.


Sign in / Sign up

Export Citation Format

Share Document