hypoxia response
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 68)

H-INDEX

43
(FIVE YEARS 4)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
Pedro Barreto ◽  
Mariana L. C. Arcuri ◽  
Rômulo Pedro Macêdo Lima ◽  
Celso Luis Marino ◽  
Ivan G. Maia

Plant dicarboxylate carriers (DICs) transport a wide range of dicarboxylates across the mitochondrial inner membrane. The Arabidopsis thalianaDIC family is composed of three genes (AtDIC1, 2 and 3), whereas two genes (EgDIC1 and EgDIC2) have been retrieved in Eucalyptus grandis. Here, by combining in silico and in planta analyses, we provide evidence that DICs are partially redundant, important in plant adaptation to environmental stresses and part of a low-oxygen response in both species. AtDIC1 and AtDIC2 are present in most plant species and have very similar gene structure, developmental expression patterns and absolute expression across natural Arabidopsis accessions. In contrast, AtDIC3 seems to be an early genome acquisition found in Brassicaceae and shows relatively low (or no) expression across these accessions. In silico analysis revealed that both AtDICs and EgDICs are highly responsive to stresses, especially to cold and submergence, while their promoters are enriched for stress-responsive transcription factors binding sites. The expression of AtDIC1 and AtDIC2 is highly correlated across natural accessions and in response to stresses, while no correlation was found for AtDIC3. Gene ontology enrichment analysis suggests a role for AtDIC1 and AtDIC2 in response to hypoxia, and for AtDIC3 in phosphate starvation. Accordingly, the investigated genes are induced by submergence stress in A. thaliana and E. grandis while AtDIC2 overexpression improved seedling survival to submergence. Interestingly, the induction of AtDIC1 and AtDIC2 is abrogated in the erfVII mutant that is devoid of plant oxygen sensing, suggesting that these genes are part of a conserved hypoxia response in Arabidopsis.


Author(s):  
Bingluo Zhou ◽  
Yiran Zhu ◽  
Wenxia Xu ◽  
Qiyin Zhou ◽  
Linghui Tan ◽  
...  

Hypoxia is an important characteristic of the tumor microenvironment. Tumor cells can survive and propagate under the hypoxia stress by activating a series of adaption response. Herein, we found that lysine-specific demethylase 5B (KDM5B) was upregulated in gastric cancer (GC) under hypoxia conditions. The genetic knockdown or chemical inhibition of KDM5B impaired the growth of GC cell adapted to hypoxia. Interestingly, the upregulation of KDM5B in hypoxia response was associated with the SUMOylation of KDM5B. SUMOylation stabilized KDM5B protein by reducing the competitive modification of ubiquitination. Furthermore, the protein inhibitor of activated STAT 4 (PIAS4) was determined as the SUMO E3 ligase, showing increased interaction with KDM5B under hypoxia conditions. The inhibition of KDM5B caused significant downregulation of hypoxia-inducible factor-1α (HIF-1α) protein and target genes under hypoxia. As a result, co-targeting KDM5B significantly improved the antitumor efficacy of antiangiogenic therapy in vivo. Taken together, PIAS4-mediated SUMOylation stabilized KDM5B protein by disturbing ubiquitination-dependent proteasomal degradation to overcome hypoxia stress. Targeting SUMOylation-dependent KDM5B upregulation might be considered when the antiangiogenic therapy was applied in cancer treatment.


2021 ◽  
Vol 147 (4) ◽  
pp. 331-339
Author(s):  
Kusumawadee Utispan ◽  
Sittichai Koontongkaew

Cell Reports ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 110144
Author(s):  
Omayra Méndez-Solís ◽  
Mourad Bendjennat ◽  
Julian Naipauer ◽  
Phaedra R. Theodoridis ◽  
J.J. David Ho ◽  
...  

Author(s):  
Alexander Rühle ◽  
Nicole Wiedenmann ◽  
Jamina T. Fennell ◽  
Michael Mix ◽  
Juri Ruf ◽  
...  

Abstract Purpose Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. Methods Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson’s correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. Results Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). Conclusion Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. Trial registration The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi206-vi206
Author(s):  
Jan Kückelhaus ◽  
Paulina Will ◽  
Franz Ricklefs ◽  
Jasim Kada Benotmane ◽  
Kevin Joseph ◽  
...  

Abstract High-dimensional technologies have provided insights into transcriptional heterogeneity and dynamic plasticity which are hallmarks of brain tumors. Although scRNA-seq recovers the diversity of transcriptional states, their spatial context within the neuronal environment has remained unexplored. Here, we integrated spatially resolved transcriptomics and metabolomics to characterize the glioma landscape at multiple molecular levels. We integrated spatial transcriptomics (10X Visium, n= 28) and metabolomics (MALDI, n= 6) from primary and recurrent glioblastoma patients. Unsupervised cluster analysis and pattern recognition uncovered 5 spatially distinct transcriptional programs, shared across patients. These included three cell-specific developmental stages largely reflecting those that are part of recently suggested models. By integrating metabolome data, we identified an additional program encompassing reactive responses to hypoxia. Areas of hypoxic response were negatively correlated with proliferation (R2= -0.34, p&lt; 0.001) and significantly enriched for gene expression signatures from the S-phase (p&lt; 0.001). Modeling of transient spatial gradients using vector field predictions showed opposing vector directions of hypoxia response and migratory capacity, underpinning the “go-or-growth” theory, where cells either proliferate or migrate. Inferred copy-number alterations (CNA) revealed a significant increase in genomic instability, highly correlated to hypoxia response (R2= 0.78, p&lt; 0.001). Near necrotic areas, we observed a significant accumulation of CNAs while proliferation was inhibited, and cells remained in the S-phase. We validated this hypothesis of hypoxia-driven accumulation of CNAs by chronic hypoxia cultures of primary patient-derived cell lines. A gain of chromosomal instability after long-term hypoxia was observed, suggesting that hypoxic areas in glioblastoma function as bioreactors for genomic instability. Our findings elucidate the evolution of resistant subclones in glioblastoma. They provide novel insights into the dynamic regulation and interaction between host and tumor and cast a new light on hypoxic and necrotic areas, which may represent the source of the heterogeneous and resistant nature of glioblastomas.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Gimbel ◽  
S Koziarek ◽  
T P Pham ◽  
S Dimmeler ◽  
L Maegdefessel ◽  
...  

Abstract Background Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Hypoxia induces significant changes in cardiovascular control mechanisms potentially resulting in pathophysiology. Recently, an increasing number of long non-coding RNAs (lncRNAs) was reported to participate in the regulation of Hypoxia-inducible factors (HIF). Analysis of single-cell RNA-sequencing of human Abdominal Aortic Aneurysms pinpointed the endothelial-enriched lncRNA LINC01235. LINC01235 was previously correlated with tumour progression in gastric cancer and worse patient prognosis in breast cancer. Globally, the role of LINC01235 in the cardiovascular system remains unknown. Purpose The objective of this study is to unravel the function of LINC01235 in endothelial cells (ECs). Methods and results LINC01235 levels were elevated in human umbilical vein ECs (7.66 fold, p&lt;0.05), human aortic ECs (16.84 fold, p&lt;0.05) and human dermal microvascular ECs (639.73 fold, p&lt;0.05) over other human cardiovascular cells like vascular smooth muscle cells, aortic fibroblasts and cardiomyocytes. Severe hypoxia (0.2% O2 for 24h) reduced LINC01235 expression significantly (0.33 fold, p&lt;0.05). SiRNA-mediated LINC01235 silencing in HUVECs (0.12, p&lt;0.05) resulted in decreased proliferation (0.76 fold, p&lt;0.05) and vascular endothelial growth factor A (VEGFA)-stimulated angiogenic sprouting (0.39 fold, p&lt;0.05). Loss of LINC01235 did not affect apoptosis, metabolism or barrier function. Analysis of RNA-sequencing data revealed that many hypoxia-responsive genes were downregulated after knockdown of LINC01235 (siCtrl vs. siLINC01235). These included HIF-3α (0.24 fold, p&lt;5.86e-28) as a potential key regulator of the cellular feedback to hypoxia. Phenotypically, knockdown of HIF3A using siRNAs (0.07 fold, p&lt;0.05) resulted in decreased proliferation (0.82 fold, p&lt;0.05) and VEGFA-stimulated angiogenic sprouting (0.50 fold, p&lt;0.05). Accordingly, hypoxia response and LINC01235 knockdown exhibit a negative correlation based on transcriptomics data (R=−0.157, p&lt;2.2e-16), further emphasizing a role of LINC01235 in hypoxia response. Conclusion In summary, the EC-enriched lncRNA LINC01235 is likely required for the suppression of hypoxia-induced gene expression under normoxic conditions potentially mediated by HIF-3α. Functionally, loss of LINC01235 decreased proliferation and VEGFA-stimulated angiogenic sprouting without an effect on cell death, metabolism or barrier integrity. FUNDunding Acknowledgement Type of funding sources: Public grant(s) – National budget only. Main funding source(s): DFG - TRR267


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Huili Li ◽  
He Huang ◽  
Yunliang Cui ◽  
Weiwei Li ◽  
Shuliu Zhang ◽  
...  

Purposes. This study mainly explored the mechanism of capillary leakage caused by hypoxia-inducible factor-1α through inducing high expression of matrix metalloproteinase-9. Method. We established a monolayer endothelial cell model by culturing human umbilical vein endothelial cells (HUVEC) in vitro, used tumor necrosis factor (TNFα) and HIF-1α inhibitor 2-methoxyestradiol (2ME2) to act on HUVEC, and at the same time constructed siRNA-transfected HUVEC to interfere with the expression of HIF-1α. The permeability of monolayer endothelial cells was measured by transwell chamber method, the concentration of MMP-9 in the supernatant was measured by ELISA method, the expression of key molecules related to permeability (HIF- 1α, MMP-9, claudin-5, and ZO-1) was measured by RT-PCR and Western blot method, and the localization and expression of claudin-5 and ZO-1 were measured by immunofluorescence method. We searched for 7 HIF-1α hypoxia response elements within 4000 bp before the transcription start site in the MMP-9 promoter region, constructed the MMP-9 promoter-luciferase reporter gene recombinant plasmid, transfected and stimulated HUVEC with TNFα, and detected the effect of 7 hypoxia response element plasmids on the transcription activity of MMP-9 promoter. Results. Under the action of TNFα, the permeability of monolayer endothelial cells increased, and the concentration of MMP-9 in the cell supernatant increased. 2ME2 and HIF-1α-siRNA transfection can improve the above situation ( P < 0.05 ). 2ME2 and HIF-1α-siRNA transfection can inhibit the high expression of HIF-1α and MMP-9 caused by TNFα, thereby increasing the expression of claudin-5 and ZO-1 ( P < 0.05 ). 2ME2 and HIF-1α-siRNA transfection can reduce the inhibition of TNFα on the expression of cell membrane protein claudin-5 and tight junction protein ZO-1. Element 1, element 5, and element 7 are the sites where HIF-1α interacts with MMP-9 at the transcription level. Conclusion. This study shows that HIF-1α can increase the permeability of monolayer epithelial cells by inducing the high expression of MMP-9, leading to capillary leakage. Its target is at the −3798 bp, −1878 bp, and −1489 bp points of the transcription initiation site in the MMP-9 promoter region.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1408
Author(s):  
Estefanía Caballano-Infantes ◽  
Irene Díaz ◽  
Ana Belén Hitos ◽  
Gladys Margot Cahuana ◽  
Antonio Martínez-Ruiz ◽  
...  

The optimization of conditions to promote the stemness of pluripotent cells in vitro is instrumental for their use in advanced therapies. We show here that exposure of human iPSCs and human ESCs to low concentrations of the chemical NO donor DETA/NO leads to stabilization of hypoxia-inducible factors (HIF-1α and HIF-2α) under normoxia, with this effect being dependent on diminished Pro 402 hydroxylation and decreased degradation by the proteasome. Moreover, the master genes of pluripotency, NANOG and OCT-4, were upregulated. NO also induces a shift in the metabolic profile of PSCs, with an increased expression of hypoxia response genes in glycolysis. Furthermore, a reduction in the mitochondrial membrane potential with lower oxygen consumption and increased expression of mitochondrial fusion regulators, such as DRP1, was observed. The results reported here indicate that NO mimics hypoxia response in human PSCs and enhances their stemness properties when cultured under normoxic conditions.


Sign in / Sign up

Export Citation Format

Share Document