Production of low-oxygen oil via catalytic co-pyrolysis of biogas residue and plastics by ZSM-5

2021 ◽  
pp. 1-31
Author(s):  
Wanli Wang ◽  
Kai Sun ◽  
Piyu Gong ◽  
Qunxing Huang
Keyword(s):  
2013 ◽  
Vol 83 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Rebecca L. Sweet ◽  
Jason A. Zastre

It is well established that thiamine deficiency results in an excess of metabolic intermediates such as lactate and pyruvate, which is likely due to insufficient levels of cofactor for the function of thiamine-dependent enzymes. When in excess, both pyruvate and lactate can increase the stabilization of the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, resulting in the trans-activation of HIF-1α regulated genes independent of low oxygen, termed pseudo-hypoxia. Therefore, the resulting dysfunction in cellular metabolism and accumulation of pyruvate and lactate during thiamine deficiency may facilitate a pseudo-hypoxic state. In order to investigate the possibility of a transcriptional relationship between hypoxia and thiamine deficiency, we measured alterations in metabolic intermediates, HIF-1α stabilization, and gene expression. We found an increase in intracellular pyruvate and extracellular lactate levels after thiamine deficiency exposure to the neuroblastoma cell line SK-N-BE. Similar to cells exposed to hypoxia, there was a corresponding increase in HIF-1α stabilization and activation of target gene expression during thiamine deficiency, including glucose transporter-1 (GLUT1), vascular endothelial growth factor (VEGF), and aldolase A. Both hypoxia and thiamine deficiency exposure resulted in an increase in the expression of the thiamine transporter SLC19A3. These results indicate thiamine deficiency induces HIF-1α-mediated gene expression similar to that observed in hypoxic stress, and may provide evidence for a central transcriptional response associated with the clinical manifestations of thiamine deficiency.


Alloy Digest ◽  
2017 ◽  
Vol 66 (12) ◽  

Abstract Böhler (or Boehler) H521 is an alloy with superior high-temperature strength, excellent toughness, and with good resistance to oxidizing, nitrogenous, and low oxygen gases. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-1272. Producer or source: Böhler Edelstahl GmbH.


Author(s):  
Jens Konnerup-Madsen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Konnerup-Madsen, J. (2001). A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 190, 159-166. https://doi.org/10.34194/ggub.v190.5187 _______________ Fluid inclusions in minerals from agpaitic nepheline syenites and hydrothermal veins in the Ilímaussaq complex and in similar agpaitic complexes on the Kola Peninsula, Russia, are dominated by hydrocarbon gases (predominantly methane) and hydrogen. Such volatile compositions differ considerably from those of most other igneous rocks and their formation and entrapment in minerals reflects low oxygen fugacities and a wide range of crystallisation temperatures extending to a low-temperature solidus. Their composition reflects initial low carbon contents and high water contents of the magma resulting in the exsolution of a waterrich CO2–H2O dominated vapour phase. Fractionation of chlorides into the vapour phase results in high salinities and the subsequent development of a heterogeneous vapour phase with a highly saline aqueous-rich fraction and a methane-dominated fraction, with preferential entrapment of the latter, possibly due to different wetting characteristics. The light stable isotope compositions support an abiogenic origin for the hydrocarbons in agpaitic nepheline syenite complexes.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 479d-479
Author(s):  
Michael Knee ◽  
Ruth Brake

In urban situations, particularly after construction, herbaceous ornamentals may be planted into soils that are compacted or have poor structure so that plant roots may encounter poor aeration or physical resistance. Low oxygen concentrations may be the most important aspect of poor aeration and are readily reproduced in the laboratory. High atmospheric pressure might be used to screen for the ability to grow against physical resistance. We tested the suggestion that “native” plants would grow better in compacted soils than typical bedding plants and for differences in tolerance to low oxygen or high pressure. Plants were grown from seed in the greenhouse at four levels of compaction in peat-based medium and in field soil. Shoot dry weights of the native plants Asclepias tuberosa, Echinacea purpurea, and Schizachyrium scoparius, were less affected by growth in compacted soil or peat medium than those of the bedding plants, Antirrhinum majus, Gypsophila elegans, Impatiens balsamina, Tagetes patula and Zinnia elegans. The oxygen content of media declined with compaction to a minimum of 10 kPa. Half maximal root elongation was observed at 1 to 3 kPa oxygen for most species without any separation between the groups. A presure of 1100 kPa reduced root elongation of the bedding plants by 50 to 70% but only 5 to 20% for the native plants.


Author(s):  
Reda Bakr ◽  
Hoda Abdel Fattah ◽  
Nabila Salim ◽  
Nagwa Atiya
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document