scholarly journals Membrane-bound pyrophosphatase of human gut microbe Clostridium methylpentosum confers improved salt tolerance in Escherichia coli, Saccharomyces cerevisiae and tobacco

2016 ◽  
Vol 33 (3-5) ◽  
pp. 39-50 ◽  
Author(s):  
Yumei Yang ◽  
Yanjuan Liu ◽  
Hang Yuan ◽  
Xian Liu ◽  
Yanxiu Gao ◽  
...  
2003 ◽  
Vol 44 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Akiyo Yamada ◽  
Kouichi Tsutsumi ◽  
Shizufumi Tanimoto ◽  
Yoshihiro Ozeki

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1953246
Author(s):  
Charlène Roussel ◽  
Kim De Paepe ◽  
Wessam Galia ◽  
Jana de Bodt ◽  
Sandrine Chalancon ◽  
...  

1999 ◽  
Vol 65 (6) ◽  
pp. 2333-2340 ◽  
Author(s):  
Mikael Anderlund ◽  
Torben L. Nissen ◽  
Jens Nielsen ◽  
John Villadsen ◽  
Jan Rydström ◽  
...  

ABSTRACT We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinantSaccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiaeand thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasmine M. Hershewe ◽  
Katherine F. Warfel ◽  
Shaelyn M. Iyer ◽  
Justin A. Peruzzi ◽  
Claretta J. Sullivan ◽  
...  

AbstractCell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.


Sign in / Sign up

Export Citation Format

Share Document