Integration of statistical models and ensemble machine learning algorithms (MLAs) for developing the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia

2021 ◽  
pp. 1-35
Author(s):  
Javed Mallick ◽  
Swapan Talukdar ◽  
Majed Alsubih ◽  
Mohammed K. Almesfer ◽  
Shahfahad ◽  
...  
2020 ◽  
pp. 426-429
Author(s):  
Devipriya A ◽  
Brindha D ◽  
Kousalya A

Eye state ID is a sort of basic time-arrangement grouping issue in which it is additionally a problem area in the late exploration. Electroencephalography (EEG) is broadly utilized in a vision state in order to recognize people perception form. Past examination was approved possibility of AI & measurable methodologies of EEG vision state arrangement. This research means to propose novel methodology for EEG vision state distinguishing proof utilizing Gradual Characteristic Learning (GCL) in light of neural organizations. GCL is a novel AI methodology which bit by bit imports and prepares includes individually. Past examinations have confirmed that such a methodology is appropriate for settling various example acknowledgment issues. Nonetheless, in these past works, little examination on GCL zeroed in its application to temporal-arrangement issues. Thusly, it is as yet unclear if GCL will be utilized for adapting the temporal-arrangement issues like EEG vision state characterization. Trial brings about this examination shows that, with appropriate element extraction and highlight requesting, GCL cannot just productively adapt to time-arrangement order issues, yet additionally display better grouping execution as far as characterization mistake rates in correlation with ordinary and some different methodologies. Vision state classification is performed and discussed with KNN classification and accuracy is enriched finally discussed the vision state classification with ensemble machine learning model.


2021 ◽  
Author(s):  
Sunil Saha ◽  
Amiya Gayen ◽  
Kaustuv Mukherjee ◽  
Hamid Reza Pourghasemi ◽  
M. Santosh

Abstract Machine learning techniques offer powerful tools for the assessment and management of groundwater resources. Here, we evaluated the groundwater potential maps (GWPMs) in Md. Bazar Block of Birbhum District, India using four GIS-based machine-learning algorithms (MLA) such as predictive neural network (PNN), decision tree (DT), Naïve Bayes classifier (NBC), and random forest (RF). We used a database of 85 dug wells and one piezometer location identified using extensive field study, and employed 12 influencing factors (elevation, slope, drainage density (DD), topographical wetness index, geomorphology, lineament density, rainfall, geology, pond density, land use/land cover (LULC), geology, and soil texture) for evaluation through GIS. The 85 dug wells and 1 piezometer locations were sub-divided into two classes: 70:30 for training and model validation. The DT, RF, PNN, and NBC MLAs were implemented to analyse the relationship between the dug well locations and groundwater influencing factors to generate GWPMs. The results predict excellent groundwater potential areas (GPA) DT RF of 17.38%, 14.69%, 20.43%, and 13.97% of the study area, respectively. The prediction accuracy of each GWPM was determined using a receiver operating characteristic (ROC) curve. Using the 30% data sets (validation data), accuracies of 80.1%, 78.30%, 75.20%, and 69.2% were obtained for the PNN, RF, DT, and NBC models, respectively. The ROC values show that the four implemented models provide satisfactory and suitable results for GWP mapping in this region. In addition, the well-known mean decrease Gini (MDG) from the RF MLA was implemented to determine the relative importance of the variables for groundwater potentiality assessment. The MDG revealed that drainage density, lineament density, geomorphology, pond density, elevation, and stream junction frequency were the most useful determinants of GWPM. Our approach to delineate the GWPM can aid in the effective planning and management of groundwater resources in this region.


Author(s):  
Paul Gustafson

Abstract The article by Jiang et al (Am J. Epidemiol.) extends quantitative bias analysis from the realm of statistical models to the realm of machine learning algorithms. Given the rooting of statistical models in the spirit of explanation and the rooting of machine learning algorithms in the spirt of prediction, this extension is thought provoking indeed. Some such thoughts are expounded here.


Sign in / Sign up

Export Citation Format

Share Document