scholarly journals Nonlinear Time-Dependent Analysis of the Load-Bearing Capacity of a Single Permanent Shotcrete Lining at the Brenner Base Tunnel

2020 ◽  
Vol 30 (4) ◽  
pp. 475-483
Author(s):  
Matthias Neuner ◽  
Alexander Dummer ◽  
Magdalena Schreter ◽  
Günter Hofstetter ◽  
Tobias Cordes ◽  
...  
Author(s):  
MD Waquar Alam

Large displacements during excavation are regularly observed in Squeezing ground condition and Rock-burst condition with high overburden. The expected displacement has to be estimated prior to excavation to provide enough allowance for the displacements. The support system need to be well-suited through the estimated imposed strains. As the estimated displacements and thus the strains in the support depend upon the load-bearing capacity of support. The ratio of uniaxial compressive strength of rock mass to maximal insitu stress determines tunnel integrity in the weak region.This ratio estimates the requirements of initial lining to control strain to a stipulated level. The elasto-plastic theory may deliver definitive forecasts providing the strength limitations of rock masses are identified accurately. With the help of empirical analysis, the development of displacements for diverse advance rates and supports can be concluded. As a consequence, a quantitative finite element model based on an advanced built-in model is designed to analyse the load-bearing efficiency of initial lining although taking into consideration the time-dependent and non-linear material behaviour of initial lining. The time-dependent excavation mechanism of the drill-and-blast approach for tunnels guided by full face excavation is considered in the finite element model. The material parameters for the initial lining were computed based on case studies- (A Chibro-Khodri Hydropower Tunnel).


1978 ◽  
Vol 20 (7) ◽  
pp. 1709-1718
Author(s):  
L.O. Bunina ◽  
S.B. Ratner ◽  
T.I. Gul' ◽  
V.K. Gushchina ◽  
L.M. Yeliseyeva ◽  
...  

2011 ◽  
Vol 50-51 ◽  
pp. 859-863
Author(s):  
Qiang Li ◽  
Nan Guo Jin ◽  
Xian Yu Jin

As a supporting member of concrete structures, the reliability of the columns is of critical importance. To have models targeted to estimating the residual load-bearing capacity of corroded reinforced concrete (R.C.) columns so that inspection procedures and maintenance interventions can be well conducted, a time-dependent capacity model for corroded R.C. column is presented. The model was based on equilibrium equations on which load-bearing capacity of R.C. column at given time (year) can be predicted considering the overall deteriorations of rebar, concrete section, mechanical properties and bond behavior between corroded reinforcement and concrete. The model was verified by published literature test results of corroded R.C. columns served in atmosphere environment for years. The comparison of the model predictions with the test results shows the validity of the model. In the end, considerations for use of the model were suggested.


2020 ◽  
Vol 62 (1) ◽  
pp. 55-60
Author(s):  
Per Heyser ◽  
Vadim Sartisson ◽  
Gerson Meschut ◽  
Marcel Droß ◽  
Klaus Dröder

2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.


Sign in / Sign up

Export Citation Format

Share Document