drill and blast
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 11 (21) ◽  
pp. 10096
Author(s):  
Yangkyun Kim ◽  
Sean Seungwon Lee

This paper analyses the construction time and advance rate of a 3 km long drill and blast tunnel under various geological conditions using an upgraded NTNU drill and blast prediction model. The analysis was carried out for the five types of Korean tunnel supports according to the rock mass quality (from Type 1, meaning a very good rock mass quality; to Type 5, meaning a very poor rock mass quality). Four kinds of rock properties, as well as the rock mass quality, for each tunnel support type were applied to simulate different geological conditions based on previous studies and the NTNU model. The construction time was classified into five categories: basic, standard, gross, tunnel and total, according to the operation characteristics to more effectively analyse the time. In addition, to consider the actual geological conditions in tunnelling, the construction times for the three mixed geological cases were analysed. It was found that total construction time of a tunnel covering all the operations and site preparations with a very poor rock mass quality was more than twice that of a tunnel with a very good rock mass quality for the same tunnel length. It is thought that this study can be a useful approach to estimating the construction time and advance rate in the planning or design stage of a drill and blast tunnel.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Scott Donald ◽  
Michael P. Love ◽  
Basem Elbarouni
Keyword(s):  

2021 ◽  
Vol 861 (4) ◽  
pp. 042059
Author(s):  
Jianxiu Wang ◽  
Fan Wu ◽  
Xiaobo Zhou ◽  
Lisheng Hu
Keyword(s):  

Author(s):  
MD Waquar Alam

Large displacements during excavation are regularly observed in Squeezing ground condition and Rock-burst condition with high overburden. The expected displacement has to be estimated prior to excavation to provide enough allowance for the displacements. The support system need to be well-suited through the estimated imposed strains. As the estimated displacements and thus the strains in the support depend upon the load-bearing capacity of support. The ratio of uniaxial compressive strength of rock mass to maximal insitu stress determines tunnel integrity in the weak region.This ratio estimates the requirements of initial lining to control strain to a stipulated level. The elasto-plastic theory may deliver definitive forecasts providing the strength limitations of rock masses are identified accurately. With the help of empirical analysis, the development of displacements for diverse advance rates and supports can be concluded. As a consequence, a quantitative finite element model based on an advanced built-in model is designed to analyse the load-bearing efficiency of initial lining although taking into consideration the time-dependent and non-linear material behaviour of initial lining. The time-dependent excavation mechanism of the drill-and-blast approach for tunnels guided by full face excavation is considered in the finite element model. The material parameters for the initial lining were computed based on case studies- (A Chibro-Khodri Hydropower Tunnel).


2021 ◽  
Vol 127 ◽  
pp. 103719
Author(s):  
Arsalan Mahmoodzadeh ◽  
Mokhtar Mohammadi ◽  
Krikar M Gharrib Noori ◽  
Mohammad Khishe ◽  
Hawkar Hashim Ibrahim ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1814
Author(s):  
Min Seong Kim ◽  
Sean Seungwon Lee

Drill and blast is the most cost-effective excavation method for underground construction, however, vibration and noise, induced by blasting, have been consistently reported as problems. Cut blasting has been widely employed to reduce the blast-induced problems during underground excavation. We propose that the large hole boring method using the state-of-the-art MSP (Multi-setting smart-investigation of the ground and pre-large hole boring) machine (“MSP method”) can efficiently improve vibration reduction. The MSP machine will be used to create 382 mm diameter empty holes at the tunnel cut area for this purpose. This study assessed the efficiency of the MSP method in reducing blast-induced vibration in five blasting patterns using a cylinder-cut, which is a traditional cut blasting method. The controlled blasting patterns using the MSP method demonstrated up to 72% reduction in blast-induced vibration, compared to the base case, Pattern B, where only cylinder-cut and smooth blasting method were applied. Therefore, the MSP method proves to be a promising alternative for blasting in sensitive urban areas where non-vibration excavation techniques were initially considered. Geological characteristics of 50 m beyond the excavation face can be acquired through the proposed real-time boring data monitoring system together with a borehole alignment tracking and ground exploration system. The obtained geological information will be a great help in preparing alternative designs, and scheduling of construction equipment and labour during the tunnel construction.


2021 ◽  
Vol 325 ◽  
pp. 04002
Author(s):  
Dico Nasrulloh ◽  
Agung Setianto ◽  
I Gde Budi Indrawan

This paper presents the results of geological engineering research conducted to determine the character of rock masses, recommendations of tunnel excavation method and support system based on standup time estimates in unsuported conditions. The investigation was conducted by observing rock mass quality based on the newest bore log sample test results in 2019 using Rock Mass Rating (RMR) and Geological Strength Index (GSI) rock mass classification. The results showed that area consist of lithology in the form of porphyryc lava basalt and pyroclastic volcanic breccia. Rock mass has a slightly weathering alteration rates. Intact rocks have Uniaxial Compressive Strength (UCS) values ranging from 100-250 Mpa to >250 Mpa and are a category of strong rocks. Rock mass has fair to good rock quality class III-II based on RMR values between 53-69, GSI values between 48-64. The roof span required is obtained from the tunnel planning roof span of 10 meter, with a stand-up time of 70 hours without support system and immediate collapse for 5 days. The recommended excavation methods are excavation by drill and blast on top heading and bench: 1,5-3 meter advance in top heading tunnel face, and then can be recommended support system using rock bolts (20 mm diameter, fullly bonded): systematic bolts 4 meter long, spaced 1,5-2 meter in crown and bench with wiremesh in crown then shotcrete: 50-100 mm in crown, and 30 mm in sides, without steel ribs support.


Sign in / Sign up

Export Citation Format

Share Document