scholarly journals The energy absorption behavior of novel composite sandwich structures reinforced with trapezoidal latticed webs

2021 ◽  
Vol 60 (1) ◽  
pp. 503-518
Author(s):  
Juan Han ◽  
Lu Zhu ◽  
Hai Fang ◽  
Jian Wang ◽  
Peng Wu

Abstract This article proposed an innovative composite sandwich structure reinforced with trapezoidal latticed webs with angles of 45°, 60° and 75°. Four specimens were conducted according to quasi-static compression methods to investigate the compressive behavior of the novel composite structures. The experimental results indicated that the specimen with 45° trapezoidal latticed webs showed the most excellent energy absorption ability, which was about 2.5 times of the structures with vertical latticed webs. Compared to the traditional composite sandwich structure, the elastic displacement and ultimate load-bearing capacity of the specimen with 45° trapezoidal latticed webs were increased by 624.1 and 439.8%, respectively. Numerical analysis of the composite sandwich structures was carried out by using a nonlinear explicit finite element (FE) software ANSYS/LS-DYNA. The influence of the thickness of face sheets, lattice webs and foam density on the elastic ultimate load-bearing capacity, the elastic displacement and initial stiffness was analyzed. This innovative composite bumper device for bridge pier protection against ship collision was simulated to verify its performance. The results showed that the peak impact force of the composite anti-collision device with 45° trapezoidal latticed webs would be reduced by 17.3%, and the time duration will be prolonged by about 31.1%.

2021 ◽  
pp. 109963622110288
Author(s):  
Meijuan Ji ◽  
Yanfeng Guo ◽  
Xuxiang Han ◽  
Yungang Fu ◽  
Jianfen Kang ◽  
...  

The paper composite sandwich structure with corrugation and honeycomb cores has been widely used in civil and national defense industries, and the cushioning energy absorption characteristic is a key indicator to evaluate the performance of this composite structure. Therefore, this paper is focus on the influences of honeycomb thickness on the shock acceleration response and deformation characteristics to analyze cushioning energy absorption performance of the composite structure by various experimental tests. The experimental result shows that, the paper corrugation layer firstly comes into crushed, and then the paper honeycomb layer is crushed. Additionally, the large honeycomb thickness may cause the secondary collapse of paper honeycomb layer. Under the same impact energy or impact mass, the cushioning energy absorption of the single-sided composite sandwich structure is better than that of the double-sided structure with the same honeycomb thickness. However, the impact resistance of the double-sided composite structure is better than that of the single-sided structure. For the paper composite sandwich structures with the honeycomb thicknesses 10, 15, 20 and 25 mm, the increase of honeycomb thickness would decrease the cushioning energy absorption of the whole structure under the drop impact with low energy. However, under the drop impact with high energy, the influence of honeycomb thickness on cushioning energy absorption is contrary. For the paper composite sandwich structure, the specific energy absorption, unit volume energy absorption, and stroke efficiency for the honeycomb thicknesses 10, 15, 20 and 25 mm are higher than those for the honeycomb thickness 70 mm. Therefore, the low honeycomb thickness is more advantageous for the cushioning energy absorption of paper composite sandwich structure.


Author(s):  
Risa Fujinaga ◽  
Tatsumasa Kaita ◽  
Ryoko Koyama ◽  
Tsutomu Imai ◽  
Katashi Fujii

The load bearing capacity of an existing corroded pony truss bridge, which is used for 100 years was estimated from FEM results for whole bridge model. The beam element model is to clarify that the influence of the residual out-of-plane deformation in main truss structures on the load bearing capacity from the viewpoint of whole bridge. Also, shell element model is to clarify that the influence of severe corrosion damages occurred in many structural members on the load bearing capacity as whole bridge. On the other hand, the influence of assumed support conditions in analytical models were discussed from the analytical results of both type of models, because it will be thought that the performance of shoes deteriorates gradually by long in-service period. The ultimate load bearing capacity was estimated by the critical live load magnification. From the analytical results, the residual out-of-plane deformation of main truss structures in this bridge had little influence on the ultimate load bearing capacity. Also, the ultimate load bearing capacity may decrease up to 20% due to aging deterioration of shoes including corrosion damages. In bridge maintenance, it should be paid attention on local severe corrosion damages on the structural member, which may occur higher secondary stress.


2021 ◽  
Vol 31 (2) ◽  
pp. 117-137
Author(s):  
Sagar Jaiswal ◽  
Vinay Bhushan Chauhan

Abstract The use of geosynthetic reinforcement to enhance the ultimate load-bearing capacity and reduce the anticipated settlement of the shallow foundation has gained sufficient attention in the geotechnical field. The improved performance of the shallow foundation is achieved by providing one or more layers of geosynthetics below the foundation. The full wraparound technique proved to be efficient for the confinement of soil mass and reduction in settlement of foundation however lacks the literature to ascertain the performances of such footing under dynamic loading. In view of the above, the present study examines the effect of geosynthetic layers having a finite length with full wraparound ends as a reinforcement layer, placed horizontally at a suitable depth below the foundation using the finite element modeling (FEM) and evaluates the ultimate load-bearing capacity of a strip footing resting on loose and dense coarse-grained earth beds under seismic loading and further compared to those of footing resting on unreinforced earth bed. Moreover, the effect of horizontal seismic acceleration coefficient (kh) on the ultimate load-bearing capacity has been investigated by varying kh from 0.1 to 0.6 at an interval of 0.1, for both reinforced and unreinforced earth bed having loose and dense soil strata. Furthermore, this study demonstrates that by adopting the new practice of using the geosynthetic reinforcement with the full wraparound ends in foundations, it is possible to support relatively heavier structures under static as well as dynamic loading without allowing large footing settlements. From the outcomes of the present study, it is noted that the ultimate load-bearing capacity of footing resting on loose and dense sand bed found to be improved by 60% and 18% for soils having friction angle of 25° and 40°, respectively compared to respective unreinforced earth beds under static condition.


2020 ◽  
pp. 109963622094291
Author(s):  
Yongha Kim ◽  
Jungsun Park

This article proposes the use of a support as a passive vibration absorber to a composite sandwich structure for vibration suppression of satellite structures. Based on continuous mass distributions, an approximate formulation is presented for conducting vibration (modal, frequency response) analyses of the composite sandwich structure with the support. This formulation is derived by the Ritz method; verified for accuracy and computational efficiency by comparing finite element analyses. Finally, we perform optimization of the composite sandwich structure with passive vibration absorber by the present method. This optimization is conducted to applying satellite structures for maximizing vibration suppression performance in limited mass. The optimization result allows a database to be obtained on the vibration characteristics of composite sandwich structures with passive vibration absorber for applying aerospace applications. Consequently, it is concluded that the approximate formulation is well suited to vibration analyses of composite sandwich structures with passive vibration absorber due to their relative simplicity and computational efficiency.


Author(s):  
Hari P. Konka ◽  
M. A. Wahab ◽  
K. Lian

The smart sandwich structures have been widely used in the aerospace, automobile, marine, and civil engineering applications. A typical smart sandwich structure is usually comprised of two stiff face skins separated by a thick core with variety of embedded sensors to monitor the performance of the structures. In this study, the smart composite sandwich structure (CSS) samples are fabricated with glass microballoons syntactic foam core and resin infused glass-fiber face skins (with piezoelectric fiber composite sensors (PFCS) embedded inside the resin infused glass-fiber face skins). One of the main concerns associated with embedding sensors inside composite structures is the structural continuity, compatibility, and interface stress concentrations caused by the significant differences in material property between sensor and host structures. PFCS are highly flexible, easily embeddable, highly compatible with composite structures and their manufacturing processes, which makes them ideal for composite health monitoring applications. In this study, in-plane tensile, tension–tension fatigue, short beam shear, and flexural tests are performed to evaluate the effect on strengths/behavior of the CSS samples due to embedded PFCS. Then carefully planned experiments are conducted to investigate the ability of the embedded PFCS to monitor the stress/strain levels and detect damages in CSS using modal analysis technique. The tensile tests show that both the average ultimate strength and the modulus of elasticity of the tested laminate with or without embedded PFCS are within 7% of each other. The stress–life (S-N) curves obtained from fatigue tests indicates that the fatigue lives and strengths with and without the PFCS are close to each other as well. From short beam and flexural test results, it is observed that embedded PFCS leads to a reduction of 5.4% in the short beam strength and 3.6% in flexural strength. Embedded PFCS’s voltage output response under tension–tension fatigue loading conditions has been recorded simultaneously to study their ability to detect the changes in input loading conditions. A linear relationship has been observed between the changes in the output voltage response of the sensor and changes in the input stress amplitude. This means that by constantly monitoring the output response of the embedded PFCS, one could effectively monitor the magnitude of stress/strain acting on the structure. Experiments are also performed to explore the ability of the embedded PFCS to detect the damages in the structures using modal analysis technique. Results from these experiments show that the PFCS are effective in detecting the initiations of damages like delamination inside these composite sandwich structures through changes in natural frequency modes. Hence embedded PFCS could be an effective method to monitor the health of the composite sandwich structures’ in-service conditions.


2010 ◽  
Vol 163-167 ◽  
pp. 2240-2246 ◽  
Author(s):  
Jun Hua Li ◽  
Yue Feng Tang ◽  
Ming Zhe Liu

This paper provided three test data pertaining to the mechanical properties of steel reinforced concrete (SRC) eccentric columns after exposure to fire and one comparative test data pertaining to the mechanical properties of steel reinforced concrete columns at room temperature. The influence of eccentricity on failure mode, distortion performance and ultimate load bearing capacity are mainly studied. Test results show that the failure modes of steel reinforced concrete eccentric columns after exposure to fire are similar to that at room temperature. Strain along the section height at mid-span section of eccentric columns before loaded to 90% ultimate load bearing capacity is linearly distributed and well agree with the plane section supposition. After exposure to fire, the flexural rigidity and load bearing capacity of specimens are all declined compared with that at normal temperature. In various loading stages from the initial loading to 80% ultimate strength, the ratio of flexural rigidity of SRC eccentric columns after exposure to fire and at normal temperature is ranged from 0.30 to 0.59. With the same concrete strength and heating condition, the ultimate strength of specimens decreases with the increasing of eccentricity. The ultimate bearing capacity of all specimens at normal room temperature is calculated on the method proposed by Chinese regulation JGJ 138-2001. The compared results of experimental values and calculating values show that the residual load bearing capacity of SRC eccentric columns after exposure to fire is about 69% to 81% of that at room temperature.


2021 ◽  
Vol 60 (1) ◽  
pp. 64-79
Author(s):  
Junqing Hong ◽  
Shaofeng Zhang ◽  
Hai Fang ◽  
Xunqian Xu ◽  
Honglei Xie ◽  
...  

Abstract The performance of textile reinforced concrete composite panels (TRCCPs) under the action of pseudo-static load up to collapse was evaluated. The test of TRCCPs under axial and transverse loading was conducted, and the results were compared with those for steel wire mesh reinforced-concrete composite panels (SMRCCPs). Ceram-site concrete was utilized as the panel matrix owing to its lightweight and insulation characteristics. The ultimate load bearing capacity, load-deformation and load-strain relationships, and failure modes were discussed and investigated in comparison with the findings of non-linear finite-element-model (FEM) analysis and the analytic method on the basis of the reinforced concrete (RC) theory. The analysis results indicate that TRCCP is suitable for use as a potential structural member for a wall or slab system of buildings, and the typical RC theory can be applied to predict the ultimate load bearing capacity if modified suitably.


2011 ◽  
Vol 243-249 ◽  
pp. 5122-5127
Author(s):  
Jia Feng Xu ◽  
Ming Zhe Liu ◽  
Yue Feng Tang

This paper provided three test data pertaining to the mechanical properties of reinforced concrete columns after exposure to ISO834 standard fire and three comparative test data pertaining to the mechanical properties of reinforced concrete columns at room temperature, mainly concerning the influence of fire on failure mode, distortion performance and ultimate load bearing capacity of reinforced concrete columns under axial and eccentric compression. Test results show that the failure mode of reinforced concrete columns after exposure to fire is basically same with that at room temperature. With the same concrete strength and heating condition, the bearing capacity of specimens reduces as the eccentricity increases. Strain along the section height of eccentric columns after fire basically agree with the plane section supposition while the flexural rigidity and ultimate load bearing capacity decreases obviously. The residual load bearing capacity of reinforced concrete columns after exposure to fire is only about 25% to 37% of that at room temperature.


2011 ◽  
Vol 261-263 ◽  
pp. 765-769 ◽  
Author(s):  
Han Xu ◽  
Xiao Nong Guo ◽  
Yong Feng Luo

The application of Aluminum alloy T-stub joints has been found widely in China recently, while the research achievements of the joint are far from adequate for design. This paper is focused on the ultimate load-bearing capacity of aluminum alloy T-stub joints. On the basis of Kulak prying model, formulas for calculating ultimate load-bearing capacity, considering four types of failure modes, are derived. The numerical simulation is carried out by means of ABAQUS FEA. Numerical results are verified by comparing with previous results obtained from experimental analysis. A parametric analysis is performed to investigate the influence of several geometrical parameters on the behavior of aluminum alloy T-stub joints including failure modes, ultimate load-bearing capacity and effective length of flanges. These numerical results are also compared with those calculated by relevant formulas in EC9.


Sign in / Sign up

Export Citation Format

Share Document