scholarly journals A bivariate generating function for zeta values and related supercongruences

2020 ◽  
Vol 26 (11-12) ◽  
pp. 1526-1537
Author(s):  
Roberto Tauraso
2008 ◽  
Vol Vol. 10 no. 3 (Combinatorics) ◽  
Author(s):  
Khodabakhsh Hessami Pilehrood ◽  
Tatiana Hessami Pilehrood

Combinatorics International audience By application of the Markov-WZ method, we prove a more general form of a bivariate generating function identity containing, as particular cases, Koecher's and Almkvist-Granville's Apéry-like formulae for odd zeta values. As a consequence, we get a new identity producing Apéry-like series for all ζ(2n+4m+3),n,m ≥ 0, convergent at the geometric rate with ratio 2−10.


2017 ◽  
Vol 28 (05) ◽  
pp. 1750033 ◽  
Author(s):  
Zhonghua Li ◽  
Chen Qin

In this paper, the extended double shuffle relations for interpolated multiple zeta values (MZVs) are established. As an application, Hoffman’s relations for interpolated MZVs are proved. Furthermore, a generating function for sums of interpolated MZVs of fixed weight, depth and height is represented by hypergeometric functions, and we discuss some special cases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Shifeng Ding ◽  
Weijun Liu

Multiple zeta values are the numbers defined by the convergent seriesζ(s1,s2,…,sk)=∑n1>n2>⋯>nk>0(1/n1s1 n2s2⋯nksk), wheres1,s2,…,skare positive integers withs1>1. Fork≤n, letE(2n,k)be the sum of all multiple zeta values with even arguments whose weight is2nand whose depth isk. The well-known resultE(2n,2)=3ζ(2n)/4was extended toE(2n,3)andE(2n,4)by Z. Shen and T. Cai. Applying the theory of symmetric functions, Hoffman gave an explicit generating function for the numbersE(2n,k)and then gave a direct formula forE(2n,k)for arbitraryk≤n. In this paper we apply a technique introduced by Granville to present an algorithm to calculateE(2n,k)and prove that the direct formula can also be deduced from Eisenstein's double product.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.


1994 ◽  
Vol 31 (A) ◽  
pp. 207-237 ◽  
Author(s):  
J. W. Cohen

For positive recurrent nearest-neighbour, semi-homogeneous random walks on the lattice {0, 1, 2, …} X {0, 1, 2, …} the bivariate generating function of the stationary distribution is analysed for the case where one-step transitions to the north, north-east and east at interior points of the state space all have zero probability. It is shown that this generating function can be represented by meromorphic functions. The construction of this representation is exposed for a variety of one-step transition vectors at the boundary points of the state space.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 600 ◽  
Author(s):  
Yuriy Shablya ◽  
Dmitry Kruchinin

In this paper, we study such combinatorial objects as labeled binary trees of size n with m ascents on the left branch and labeled Dyck n-paths with m ascents on return steps. For these combinatorial objects, we present the relation of the generated number triangle to Catalan’s and Euler’s triangles. On the basis of properties of Catalan’s and Euler’s triangles, we obtain an explicit formula that counts the total number of such combinatorial objects and a bivariate generating function. Combining the properties of these two number triangles allows us to obtain different combinatorial objects that may have a symmetry, for example, in their form or in their formulas.


2008 ◽  
Vol 2 (2) ◽  
pp. 234-240 ◽  
Author(s):  
Helmut Prodinger

Kortchemski introduced a new parameter for random permutations: the sum of the positions of the records. We investigate this parameter in the context of random words, where the letters are obtained by geometric probabilities. We find a relation for a bivariate generating function, from which we can obtain the expectation, exactly and asymptotically. In principle, one could get all moments from it, but the computations would be huge.


Sign in / Sign up

Export Citation Format

Share Document