scholarly journals Special Cases of the Parking Functions Conjecture and Upper-Triangular Matrices

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.

10.37236/1821 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas A. Loehr ◽  
Jeffrey B. Remmel

Haglund and Loehr previously conjectured two equivalent combinatorial formulas for the Hilbert series of the Garsia-Haiman diagonal harmonics modules. These formulas involve weighted sums of labelled Dyck paths (or parking functions) relative to suitable statistics. This article introduces a third combinatorial formula that is shown to be equivalent to the first two. We show that the four statistics on labelled Dyck paths appearing in these formulas all have the same univariate distribution, which settles an earlier question of Haglund and Loehr. We then introduce analogous statistics on other collections of labelled lattice paths contained in trapezoids. We obtain a fermionic formula for the generating function for these statistics. We give bijective proofs of the equivalence of several forms of this generating function. These bijections imply that all the new statistics have the same univariate distribution. Using these new statistics, we conjecture combinatorial formulas for the Hilbert series of certain generalizations of the diagonal harmonics modules.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Elizabeth Niese

International audience The Hilbert series of the Garsia-Haiman module can be written as a generating function of standard fillings of Ferrers diagrams. It is conjectured by Haglund and Loehr that the Hilbert series of the diagonal harmonics can be written as a generating function of parking functions. In this paper we present a weight-preserving injection from standard fillings to parking functions for certain cases. La série Hilbert du module Garsia-Haiman peut être écrite comme fonction génératrice de tableaux des diagrammes Ferrers. Haglund et Loehr conjecturent que la série Hilbert de l'harmonic diagonale peut être écrite comme fonction génératrice des fonctions parking. Dans cet essai nous présentons une injection des tableaux vers les fonctions parking pour certains cas.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Drew Armstrong

International audience In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme des nombres q,t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons deux statistiques sur les permutations affines; l'une à partir de l'arrangement d'hyperplans Shi, et l'autre à partir d'un nouvel arrangement — que nous appelons l'arrangement Ish. Nous prouvons que nos statistiques sont équivalentes aux statistiques area' et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s'exprime naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux directions: arrangements Shi "étendus'', et chambres bornées associées. Cela conduit à une interprétation (conjecturale) combinatoire pour toutes les puissances entières de l'opérateur nabla de Bergeron-Garsia appliqué aux fonctions symétriques élémentaires.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Vít Jelínek

International audience In this paper, we first derive an explicit formula for the generating function that counts unlabeled interval orders (a.k.a. (2+2)-free posets) with respect to several natural statistics, including their size, magnitude, and the number of minimal and maximal elements. In the second part of the paper, we derive a generating function for the number of self-dual unlabeled interval orders, with respect to the same statistics. Our method is based on a bijective correspondence between interval orders and upper-triangular matrices in which each row and column has a positive entry. Dans cet article, on obtient une expression explicite pour la fonction génératrice du nombre des ensembles partiellement ordonnés (posets) qui évitent le motif (2+2). La fonction compte ces ensembles par rapport à plusieurs statistiques naturelles, incluant le nombre d'éléments, le nombre de niveaux, et le nombre d'éléments minimaux et maximaux. Dans la deuxième partie, on obtient une expression similaire pour la fonction génératrice des posets autoduaux évitant le motif (2+2). On obtient ces résultats à l'aide d'une bijection entre les posets évitant (2+2) et les matrices triangulaires supérieures dont chaque ligne et chaque colonne contient un élément positif.


10.37236/6714 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Robin Sulzgruber ◽  
Marko Thiel

Let $\Phi$ be an irreducible crystallographic root system with Weyl group $W$, coroot lattice $\check{Q}$ and Coxeter number $h$. Recently the second named author defined a uniform $W$-isomorphism $\zeta$ between the finite torus $\check{Q}/(mh+1)\check{Q}$ and the set of non-nesting parking functions $\operatorname{Park}^{(m)}(\Phi)$. If $\Phi$ is of type $A_{n-1}$ and $m=1$ this map is equivalent to a map defined on labelled Dyck paths that arises in the study of the Hilbert series of the space of diagonal harmonics. In this paper we investigate the case $m=1$ for the other infinite families of root systems ($B_n$, $C_n$ and $D_n$). In each type we define models for the finite torus and for the set of non-nesting parking functions in terms of labelled lattice paths. The map $\zeta$ can then be viewed as a map between these combinatorial objects. Our work entails new bijections between (square) lattice paths and ballot paths.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250018 ◽  
Author(s):  
SILVIA BOUMOVA ◽  
VESSELIN DRENSKY

Let T(Uk) be the T-ideal of the polynomial identities of the algebra of k × k upper triangular matrices over a field of characteristic zero. We give an easy algorithm which calculates the generating function of the cocharacter sequence χn(Uk) = Σλ⊢n mλ(Uk)χλ of the T-ideal T(Uk). Applying this algorithm we have found the explicit form of the multiplicities mλ(Uk) in two cases: (i) for the "largest" partitions λ = (λ1,…,λn) which satisfy λk+1 +⋯+ λn = k - 1; (ii) for the first several k and any λ.


1990 ◽  
Vol 327 (4) ◽  
pp. 573-577
Author(s):  
Reza R. Adhami ◽  
David J. Lanteigne ◽  
Don A. Gregory

2006 ◽  
Vol 183 (2) ◽  
pp. 729-737 ◽  
Author(s):  
Rafael Álvarez ◽  
Francisco Ferrández ◽  
José-Francisco Vicent ◽  
Antonio Zamora

Sign in / Sign up

Export Citation Format

Share Document