A novel peroxidase from white-rot Agaricomycetes fungus Phlebia radiata strain KB-DZ15: Its purification, characterisation, and potential application for dye-decolorisation and lignin-biodegradation

Author(s):  
Khelifa Bouacem ◽  
Fawzi Allala ◽  
Nadia Zaraî Jaouadi ◽  
Sondes Hamdi ◽  
Sondes Mechri ◽  
...  

Genetics provides an approach to the analysis of the complex function of lignin biodegradation, through the isolation of mutants and the creation of gene libraries for the identification of genes and their products. However, white-rot fungi (for example, Phanerochaete chrysosporium ) have not so far been analysed from this point of view, and there is the challenge of establishing such genetics. P. chrysosporium is convenient experimentally because relatively few genes are switched on at the onset of ligninolytic activity. We describe the isolation of clones carrying genes expressed specifically in the ligninolytic phase, the development of a general strategy for mapping such clones, and the elucidation of the mating system of this organism. Another objective is the development of methods for transforming DNA into P. chrysosporium . This would allow the use of site-directed mutagenesis to analyse the functioning of ligninases, and the control of expression of the corresponding genes. The use of genetic crosses for strain improvement and the identification of components of the system are also discussed.


Author(s):  
Jussi Kontro ◽  
Riku Maltari ◽  
Joona Mikkilä ◽  
Mika Kähkönen ◽  
Miia R. Mäkelä ◽  
...  

Utilization of lignin-rich side streams has been a focus of intensive studies recently. Combining biocatalytic methods with chemical treatments is a promising approach for sustainable modification of lignocellulosic waste streams. Laccases are catalysts in lignin biodegradation with proven applicability in industrial scale. Laccases directly oxidize lignin phenolic components, and their functional range can be expanded using low-molecular-weight compounds as mediators to include non-phenolic lignin structures. In this work, we studied in detail recombinant laccases from the selectively lignin-degrading white-rot fungus Obba rivulosa for their properties and evaluated their potential as industrial biocatalysts for the modification of wood lignin and lignin-like compounds. We screened and optimized various laccase mediator systems (LMSs) using lignin model compounds and applied the optimized reaction conditions to biorefinery-sourced technical lignin. In the presence of both N–OH-type and phenolic mediators, the O. rivulosa laccases were shown to selectively oxidize lignin in acidic reaction conditions, where a cosolvent is needed to enhance lignin solubility. In comparison to catalytic iron(III)–(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation systems, the syringyl-type lignin units were preferred in mediated biocatalytic oxidation systems.


Author(s):  
Bhramar Dutta ◽  
Vinod Kumar Nigam ◽  
Anindya Sundar Panja ◽  
Smriti Shrivastava ◽  
Rajib Bandopadhyay

1998 ◽  
Vol 44 (7) ◽  
pp. 676-680 ◽  
Author(s):  
Orly Ardon ◽  
Zohar Kerem ◽  
Yitzhak Hadar

The white rot fungus Pleurotus ostreatus was grown in a chemically defined solid state fermentation system amended with cotton stalk extract (CSE).Treated cultures exhibited increased laccase activity as well as enhanced lignin mineralization. Mineralization of [14C]lignin initialized 4 days earlier in CSE-supplemented cultures than in control cultures. Total mineralization in the first 16 days was 15% in the CSE-treated cultures, compared with only 7% in the controls. Cotton stalk extract also contained compounds that serve as substrates for laccase purified from P. ostreatus as shown by oxygen consumption, as well as changes in the UV–visible spectrum.Key words: cotton, Pleurotusostreatus, white rot, laccase, lignin biodegradation.


2006 ◽  
Vol 50 (5) ◽  
pp. 323-333 ◽  
Author(s):  
Miia R. Mäkelä ◽  
Kristiina S. Hildén ◽  
Terhi K. Hakala ◽  
Annele Hatakka ◽  
Taina K. Lundell

2020 ◽  
Author(s):  
Jianqiao Wang ◽  
Tomohiro Suzuki ◽  
Hideo Dohra ◽  
Toshio Mori ◽  
Hirokazu Kawagishi ◽  
...  

Abstract Background Lignocellulosic biomass is an organic matrix composed of cellulose, hemicellulose, and lignin. In nature, lignin degradation by basidiomycetes is the key step in lignocellulose decay. The white-rot fungus Phanerochaete sordida YK-624 (YK-624) has been extensively studied due to its high lignin degradation ability. In our previous study, it was demonstrated that YK-624 can secrete lignin peroxidase and manganese peroxidase for lignin degradation. However, the underlying mechanism for lignin degradation by YK-624 remains unknown.Results Here, we analyzed YK-624 gene expression following growth under ligninolytic and nonligninolytic conditions and compared the differentially expressed genes in YK-624 to those in the model white-rot fungus P. chrysosporium by next-generation sequencing. More ligninolytic enzymes and lignin-degrading auxiliary enzymes were upregulated in YK-624. This might explain the high degradation efficiency of YK-624. In addition, the genes involved in energy metabolism pathways, such as the TCA cycle, oxidative phosphorylation, lipid metabolism, carbon metabolism and glycolysis, were upregulated under ligninolytic conditions in YK-624.Conclusions In the present study, the first differential gene expression analysis of YK-624 under ligninolytic and nonligninolytic conditions was reported. The results obtained in this study indicated that YK-624 produces more energy- and lignin-degrading enzymes for more efficient lignin biodegradation.


Author(s):  
Shan Cao ◽  
Xudong Xu ◽  
Deyi Zhu ◽  
Changhua Jiang ◽  
Tianping Yu ◽  
...  

The dye effluent is usually difficult to be degraded by conventional wastewater treatment in leather industry. In order to develop efficient and cost-effective treatment methods, we evaluate the effect of white-rot fungus immobilization for dye decolorisation in this paper. The Phanerochaete chrysosporium BKM-F-1767 was used for immobilization. This research found that the white-rot fungus immobilization had an obviously decolorisation effect in dye wastewater treatment, and plant carriers such as sorghum stalk and corn cob were helpful to the growth of Phanerochaete chrysosporium in white-rot fungus immobilization. Due to the stability and recyclability, the white-rot fungus co-immobilization was considered as the most suitable treatment for decolorisation of dye effluent which enjoyed the advantages of both adsorption immobilization and entrapment immobilization. Furthermore, the dye decolorisation evaluation was carried out to find the most suitable carrier for co-immobilization, and it found that sorghum stalk - calcium-alginate gel spherical particle (SS-CGPB) has better decolorisation effect than corn cobs - calcium-alginate gel spherical particle (CC-CGPB), and the dye decolorisation rate was 86.77%. After 5 cycles, the dye decolorisation rate was 85.87% which indicated the SS-CGPB preserved functional integrity successfully. By further analyzing the biodegradation process with white-rot fungus immobilization, the intermediate products were observed and the degradation pathway of acid golden yellow dye molecular was proposed. The results showed that the C-N single bonds attached to the central benzene in the dye molecule were attacked and destroyed in white-rot fungus co-immobilization treatment, thus the structure of dye molecule could be successfully degraded into small molecules which would be more easily treated by conventional treatment methods. Therefore, the white rot fungus co-immobilization might be appropriate for pre-treatment as an important biotechnology for the advanced treatment of dye effluent.


Sign in / Sign up

Export Citation Format

Share Document