A large-scale biological control experiment to improve water quality in eutrophic Lake Taihu, China

2013 ◽  
Vol 29 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Boqiang Qin
2018 ◽  
Vol 34 (7) ◽  
pp. 2241-2254 ◽  
Author(s):  
Gabriel Fink ◽  
Sophia Burke ◽  
Stefan G. H. Simis ◽  
Külli Kangur ◽  
Tiit Kutser ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 77 ◽  
Author(s):  
Jinge Zhu ◽  
Zhaoliang Peng ◽  
Xin Liu ◽  
Jiancai Deng ◽  
Yihui Zhang ◽  
...  

Aquatic plant harvest has been widely considered a plant management measure, as it can physically remove the targeted plants quickly and efficiently. Few empirical studies have examined the effects of harvesting on water quality or the aquatic plant community in a complete lake ecosystem. A large area (196 km2) of floating-leaved Nymphoides peltata was harvested in Lake Taihu in 2013. The effects of harvesting on the coverage and biomass of N. peltata and on the submerged plant community were evaluated. The quantities of nitrogen and phosphorus removed by harvesting were calculated. Harvesting caused an immediate reduction in N. peltata coverage, and its coverage in the following year ranged from 29.2% to 95.1%. Wave conditions and interspecific competition were the main factors that influenced the response of the submerged plant community to N. peltata harvesting. Harvesting may favor the dominance of Hydrilla verticillata, which expands quickly at an average growth rate of 53 ± 14 g m−2 day−1. Harvesting a large amount of N. peltata has a positive effect on total nitrogen (TN), ammonium nitrogen (NH3-N), and chemical oxygen demand (CODMn) control but can lead to different consequences (e.g., increase in total phosphorus (TP) and algal concentration).


Author(s):  
Heather L. Welch ◽  
Christopher T. Green ◽  
Richard A. Rebich ◽  
Jeannie R.B. Barlow ◽  
Matthew B. Hicks

2011 ◽  
Vol 11 (4) ◽  
pp. 481-489
Author(s):  
S. Krause ◽  
A. Obermayer

The public drinking water supply of southern Germany is characterized by a rather decentralized network. Due to the hydrogeological setting in these parts of Germany many of the small water works with an average capacity of 50 m3/h have to treat raw water extracted from karstic or cliffy aquifers. These raw waters tend to be contaminated with particles and pathogens acquired during snowmelt or after strong rainfalls. In the last decade ultrafiltration has become the technology of choice for the removal of the aforementioned contaminants. Flux decline caused by unanticipated membrane fouling is the main limitation for the application of ultrafiltration membranes. This paper describes how membrane fouling phenomena can be predicted by using a statistical approach based on data from large scale filtration systems in combination with field and lab experiments on raw water quality and membrane performance. The data defines water quality and respective fouling phenomena both in technical scale filtration plants and in lab experiments of eleven different raw waters. The method described here is more economically feasible for small water works when compared to typical pilot experiments that are used for high capacity water works.


1995 ◽  
Vol 31 (8) ◽  
pp. 197-205 ◽  
Author(s):  
L. L. Bijlmakers ◽  
E. O. A. M. de Swart

For the area of the Ronde Venen a plan for large-scale wetland-restoration and improvement of the water quality was developed. Major elements of the developed spatial strategy are the optimal use of the specific hydrological and ecological characteristics of the area. Based on regional hydrological characteristics within the study area hydrological sub-units were distinguished by connecting discharge and recharge areas. In this way the intake of polluted surface water from outside the area could be minimized, with an optimal use of specific local differences in water quality. Two scenarios were developed and evaluated using hydrological, hydrochemical and ecological models. The scenarios differed in spatial composition and the way the water level was manipulated. In order to optimize water quality, natural and artificial pollution control mechanisms were implemented as well. An important criterion for the evaluation was the extent to which the scenarios succeeded in optimizing conditions for the realization of the ecological goals. The most promising and acceptable scenario has been worked out in further detail.


Sign in / Sign up

Export Citation Format

Share Document