Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity

2009 ◽  
Vol 44 (4) ◽  
pp. 201-222 ◽  
Author(s):  
Mathieu Vinken ◽  
Tatyana Doktorova ◽  
Elke Decrock ◽  
Luc Leybaert ◽  
Tamara Vanhaecke ◽  
...  
2005 ◽  
Vol 386 (3) ◽  
pp. 217-223 ◽  
Author(s):  
Kotb Abdelmohsen ◽  
Claudia von Montfort ◽  
Dominik Stuhlmann ◽  
P. Arne Gerber ◽  
Ulrich K.M. Decking ◽  
...  

Abstract Exposure of rat liver epithelial cells to doxorubicin, an anthraquinone derivative widely employed in cancer chemotherapy, led to a dose-dependent decrease in gap junctional intercellular communication (GJC). Gap junctions are clusters of inter-cellular channels consisting of connexins, the major connexin in the cells used being connexin-43 (Cx43). Doxorubicin-induced loss of GJC was mediated by activation of extracellular signal-regulated kinase (ERK)-1 and ERK-2, as demonstrated using inhibitors of ERK activation. Furthermore, activation of the epidermal growth factor (EGF) receptor by doxorubicin was responsible for ERK activation and the subsequent attenuation of GJC. Inhibition of GJC, however, was not by direct phosphorylation of Cx43 by ERK-1/2, whereas menadione, a 1,4-naphthoquinone derivative that was previously demonstrated to activate the same EGF receptor-dependent pathway as doxorubicin, resulting in downregulation of GJC, caused strong phos-phorylation of Cx43 at serines 279 and 282. Thus, ERK-dependent downregulation of GJC upon exposure to quinones may occur both by direct phosphorylation of Cx43 and in a phosphorylation-independent manner.


2014 ◽  
Vol 307 (1) ◽  
pp. G24-G32 ◽  
Author(s):  
Anamika M. Reed ◽  
Thomas Kolodecik ◽  
Sohail Z. Husain ◽  
Fred S. Gorelick

Decreased extracellular pH is observed in a number of clinical conditions and can sensitize to the development and worsen the severity of acute pancreatitis. Because intercellular communication through gap junctions is pH-sensitive and modulates pancreatitis responses, we evaluated the effects of low pH on gap junctions in the rat pancreatic acinar cell. Decreasing extracellular pH from 7.4 to 7.0 significantly inhibited gap junctional intracellular communication. Acidic pH also significantly reduced levels of connexin32, the predominant gap junction protein in acinar cells, and altered its localization. Increased degradation through the proteasomal, lysosomal, and autophagic pathways mediated the decrease in connexin32 under low-pH conditions. These findings provide the first evidence that low extracellular pH can regulate gap junctional intercellular communication by enhancing connexin degradation.


Sign in / Sign up

Export Citation Format

Share Document