Mass attenuation coefficients of composite materials by Geant4, XCOM and experimental data: comparative study

2014 ◽  
Vol 169 (9) ◽  
pp. 800-807 ◽  
Author(s):  
M.E. Medhat ◽  
V.P. Singh
2014 ◽  
Vol 979 ◽  
pp. 405-408
Author(s):  
Keerati Kirdsiri ◽  
Narong Sangwaranatee

In this work, total mass attenuation coefficients and effective atomic numbers of a series of three host glasses with different chemical composition, 65RmOn: 10CaO : 25Na2O mol% (where RmOnare B2O3, SiO2and P2O5, respectively) have been studied as a function of photon energy. The total mass attenuation coefficient values were taken from WinXCom program, were used to evaluate the effective atomic numbers in the energy range from 1 keV to 100 GeV. The obtained results for all samples are compared and discussed.


2019 ◽  
Vol 34 (1) ◽  
pp. 47-56
Author(s):  
Nguyen Anh ◽  
Lam Nhat ◽  
Ho Ngan ◽  
Hoang Tam

This work proposes a mathematical function for describing the dependence of mass attenuation coefficients vs. energy for composite materials in the range of 100 keV to 2 MeV. The obtained results show that the proposed function is capable of accurately describing the data with a coefficient of determination of approximately 1 for all investigated materials. Using the proposed mathematical function, the mass attenuation coefficients were interpolated and compared with the results from the Monte Carlo simulation. The results show good agreement when the simulated to interpolated mass attenuation coefficient ratios are in the range from 0.95 to 1.05. Moreover, the values of interpolated mass attenuation coefficients have also been compared with the experimental data in the previous works which indicates that most of these ratios range from 0.9 to 1.1. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/NTRP1902209E">10.2298/NTRP1902209E</a><u></b></font>


2016 ◽  
Vol 22 (6) ◽  
pp. 1233-1243 ◽  
Author(s):  
Xavier Llovet ◽  
Philippe T. Pinard ◽  
Erkki Heikinheimo ◽  
Seppo Louhenkilpi ◽  
Silvia Richter

AbstractWe report electron probe microanalysis measurements on nickel silicides, Ni5Si2, Ni2Si, Ni3Si2, and NiSi, which were done in order to investigate anomalies that affect the analysis of such materials by using the Ni L3-M4,5line (Lα). Possible sources of systematic discrepancies between experimental data and theoretical predictions of Ni L3-M4,5k-ratios are examined, and special attention is paid to dependence of the Ni L3-M4,5k-ratios on mass-attenuation coefficients and partial fluorescence yields. Self-absorption X-ray spectra and empirical mass-attenuation coefficients were obtained for the considered materials from X-ray emission spectra and relative X-ray intensity measurements, respectively. It is shown that calculatedk-ratios with empirical mass attenuation coefficients and modified partial fluorescence yields give better agreement with experimental data, except at very low accelerating voltages. Alternatively, satisfactory agreement is also achieved by using the Ni L3-M1line (Lℓ) instead of the Ni L3-M4,5line.


2019 ◽  
Vol 24 (1) ◽  
pp. 82
Author(s):  
Ahmad Mohamed Kheder ◽  
Muhsin Hasan Ali

In this study the value of linear  and mass  attenuation coefficients of Aluminum element (Al) were determinated by using x-ray Cu-tube of energies CuKα (8.048) KeV, CuKβ (8.906) KeV, and Mo-tube of energies MoKα (17.480) KeV and MoKβ (19.609) KeV.the voltage between the two electrodes are up to 35 KV.The measured  values are compared with other experimental data showing a general agreement within a precision of 0.2% - 0.8%. The mass attenuation cross-sections were thus derived and compared with other experimental data available on database of x-ray attenuation cross-sections. The agreement is always within ±7%.   http://dx.doi.org/10.25130/tjps.24.2019.013


Kerntechnik ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. 339-343 ◽  
Author(s):  
S. M. Vahabi ◽  
M. Bahreinipour ◽  
M. Shamsaie-Zafarghandi

Sign in / Sign up

Export Citation Format

Share Document