scholarly journals A mathematical function for describing the dependence of the mass attenuation coefficient versus energy for composite materials in an energy range of 100 keV to 2 MeV

2019 ◽  
Vol 34 (1) ◽  
pp. 47-56
Author(s):  
Nguyen Anh ◽  
Lam Nhat ◽  
Ho Ngan ◽  
Hoang Tam

This work proposes a mathematical function for describing the dependence of mass attenuation coefficients vs. energy for composite materials in the range of 100 keV to 2 MeV. The obtained results show that the proposed function is capable of accurately describing the data with a coefficient of determination of approximately 1 for all investigated materials. Using the proposed mathematical function, the mass attenuation coefficients were interpolated and compared with the results from the Monte Carlo simulation. The results show good agreement when the simulated to interpolated mass attenuation coefficient ratios are in the range from 0.95 to 1.05. Moreover, the values of interpolated mass attenuation coefficients have also been compared with the experimental data in the previous works which indicates that most of these ratios range from 0.9 to 1.1. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/NTRP1902209E">10.2298/NTRP1902209E</a><u></b></font>

2019 ◽  
Vol 24 (1) ◽  
pp. 82
Author(s):  
Ahmad Mohamed Kheder ◽  
Muhsin Hasan Ali

In this study the value of linear  and mass  attenuation coefficients of Aluminum element (Al) were determinated by using x-ray Cu-tube of energies CuKα (8.048) KeV, CuKβ (8.906) KeV, and Mo-tube of energies MoKα (17.480) KeV and MoKβ (19.609) KeV.the voltage between the two electrodes are up to 35 KV.The measured  values are compared with other experimental data showing a general agreement within a precision of 0.2% - 0.8%. The mass attenuation cross-sections were thus derived and compared with other experimental data available on database of x-ray attenuation cross-sections. The agreement is always within ±7%.   http://dx.doi.org/10.25130/tjps.24.2019.013


2011 ◽  
Vol 103 ◽  
pp. 71-75 ◽  
Author(s):  
Jakrapong Kaewkhao ◽  
P. Lofimkitjaroenporn ◽  
S. Tuscharoen ◽  
T. Kittiauchawal ◽  
W. Chewpraditkul ◽  
...  

The mass attenuation coefficients of blue sapphire were measured at the different energy of γ-rays using the Compton scattering technique. There are in good agreement of scattered gamma rays energies between theoretical value and experimental value, reflecting the validation of Compton scattering system setup. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue sapphire at lower energy. This result is a first report of mass attenuation coefficient of blue sapphire at different gamma rays energies.


2021 ◽  
Vol 9 (04) ◽  
pp. 01-10
Author(s):  
Fajemiroye, Joseph Ademola

Information from workers on the profitability of cassava on Iwo and Egbeda soil series in Oyo state, Nigeria have shown the Iwo soil series to be more profitable given the same scale of cassava cultivation. Therefore the need arises to improve on the soil properties of Egbeda soil series which will possibly improve the production efficiency for this category of farmers. In this work, an experimental procedure using gamma attenuation technique to determine the mass attenuation coefficient at different gamma ray energies of 59.5, 661.7, 1173.2 and 1332.5 keV, and at depths of 0 – 15, 15 – 30, 30 – 45, 45 – 60, 60 – 75 and 75 – 90 cm into the Egbeda soil series profile have been studied. Likewise X-ray fluorescence, XRF, method was used to obtain the elemental composition and concentrations at these depths while the XCOM software was applied to obtain the photon mass attenuation coefficients at the different gamma ray energies for the depths. Mass attenuation coefficients,  obtained experimentally and that computed theoretically using XCOM varied exponentially with photon energy. The correlation coefficient between the experimentally-obtained and XCOM-obtained μs for the energies considered ranged from 0.89 – 0.96. The variation of  with soil depth show that the top soil (0 – 15cm depths) is least attenuating with gamma ray penetrability varying down the profile. Information on the mass attenuation coefficients, elemental composition, and concentrations at varying depths into the soil profile will go a long way in contributing to efforts at improving the soil condition of the Egbeda soil series.  


2014 ◽  
Vol 92 (9) ◽  
pp. 968-972 ◽  
Author(s):  
B. Saritha ◽  
A.S. Nageswara Rao

The variation of linear attenuation coefficients with the densities of different samples is investigated in this paper. For this study, different types of soft wood and hard wood samples were collected from the Pakal forest area of the Warangal district, Andhra Pradesh, India. The linear and mass attenuation coefficients of different wood samples are measured using gamma ray spectrometry based on NaI(Tl) scintillation detector at the gamma ray energies of 661.6 and 59.5 keV. The experimental values of mass attenuation coefficient are compared with that of XCOM data based tool. Figures show the variation of mass attenuation coefficients of wood materials against the absorber thickness (number of mean free paths). From the numerical values, it is inferred that the large thickness of the samples reduces the scattered photons reaching the detector by decreasing the scattering angle.


1990 ◽  
Vol 69 (8) ◽  
pp. 1522-1526 ◽  
Author(s):  
F.M. Herkströter ◽  
J.J. Ten Bosch

Wavelength-independent Microradiography (WIM), described in this paper, used polychromatic, high-energy (≤ 60 kV) x-rays for determination of mineral concentrations in tooth material non-destructively. This was done with the aid of a reference step-wedge made of 94% aluminum, 6% zinc. The mass attenuation coefficient of this material has a wavelength-independent ratio to the mass attenuation coefficients of enamel and dentin. With this method, mineral concentrations of enamel and dentin samples, with a thickness up to 500 μm, were determined at 20- and at 60-kV tube voltage. The samples were demineralized for 72 and 144 h and measured again. Comparison of the data showed that mineral quantification was within 1.5%, independent of the x-rays used. Finally, these mineral concentrations-obtained from the Wavelength-independent Microradiography-were compared with measurements of the same samples by Longitudinal Microradiography. A correlation of 0.99 was found for enamel and one of 0.96 for dentin.


2015 ◽  
Vol 5 (1) ◽  
pp. 17-21
Author(s):  
E. Rajasekhar ◽  
R. Jeevan Kumar ◽  
K. Vijay Sai ◽  
Sai Prem Shaji ◽  
B. V. Avinash ◽  
...  

Mass attenuation coefficients of ten different types of wood materials were determined using gamma radiation of 1332 keV from 60Co source. Two mathematical models have been developed for the prediction of density using variation with relaxation length and half value layer of wood materials. A good agreement was observed (greater than 83%) between the measured values and the predicted model 1 and 2. Results show that Azadiracta indica has the highest relaxation length and the lowest mass attenuation coefficient, while Albizia saman has the least relaxation length and the highest mass attenuation coefficient. Results also show that Azadiracta indica has the highest half value layer and Albizia saman has the least half value layer.


2016 ◽  
Vol 675-676 ◽  
pp. 730-733
Author(s):  
Chumphon Khobkham ◽  
W. Chaiphaksa ◽  
P. Limkitjaroenporn ◽  
P. Prongsamrong ◽  
P. Wiwatkanjana ◽  
...  

In this work, the total mass attenuation coefficient and partial interactions of the zirconium alloy have been calculated by WinXCom program at 1 keV-100 MeV gamma ray energies. Zr2(Fe,Ni) alloys was studied for the mass attenuation coefficients, photoelectric absorption, incoherent, coherent and pair production processes. The effective atomic numbers and electron densities were also calculated. The calculated results show that the total mass attenuation coefficient decreased with increasing of gamma rays energy. The value of total mass attenuation coefficient of each material was different, which depend on chemical compositions of alloy. The partials interactions, effective atomic numbers and electron densities were also calculated and discussed.


2017 ◽  
Vol 95 (5) ◽  
pp. 427-431
Author(s):  
Erhan Cengiz

The LIII subshell photoelectric cross section, jump ratio, jump factor, and Davisson–Kirchner ratio of iridium have been determined by mass attenuation coefficients. The measurements have been performed using the X-ray attenuation method in narrow beam geometry. The obtained results have been compared with the tabulated values of XCOM (Berger et al. XCOM: Photon cross section database (version 1.3). NIST. Available at http://physics.nist.gov/xcom . 2005) and FFAST (Chantler et al. X-ray form factor, attenuation and scattering tables (version 2.1). NIST. Available at http://physics.nist.gov/ffast . 2005).


Sign in / Sign up

Export Citation Format

Share Document