Aboveground and Soil Seed Bank Woody Flora Comparison in Plantation and Natural Forest, Southern Ethiopia: An Implication for Forest Ecosystem Sustainability

Author(s):  
Simon Shibru ◽  
Habtamu Asres ◽  
Seyoum Getaneh ◽  
Shetie Gatew
2021 ◽  
Author(s):  
Melese Bekele Nigussie ◽  
Dessie Assefa Assefa ◽  
Yohannis Gebremariam Gebremariam

Abstract This study was carried out in Tarmaber district north shewa zone Ethiopia to determine the effect of plantation forest with management intervention on woody plant species diversity, regeneration and soil seed bank species composition in five different forest types, which are adjacent natural forest, managed Cupressus lusitanica, unmanaged C. lusitanica, managed Eucalyptus globules and not managed E. globules plantation forests. A total of 75 circular sample plots of 314 m2 were established along a transect lines. Soil seed bank analysis was done from soil samples collected in each of the plots (225 samples) to examine the similarity between the soil seed bank and aboveground flora. Different diversity index and ANOVA was used in SPSS software for analysis. The result showed that a total of 51 woody plant species was recorded in adjacent natural forest (41), managed C. lusitanica (27), not managed C. lusitanica (9), managed E. globules (22) and not managed E. globules (13) species. Regeneration of seedlings were 3538, 5567, 707, 1462 and 2524 mean stems ha− 1 for natural forest, managed C. lusitanica, not managed C. lusitanica, managed E. globules and not managed E. globules respectively. Unmanaged C. lusitanica plantations had significantly lower densities of mature tree stems ha− 1 as compared to managed C. lusitanica, managed E. globules and adjacent natural forest (F = 14.03, p < 0.05).Similarly in terms of sapling density ha− 1 unmanaged C. lusitanica was significantly lower from other forest types (F = 7.37, p < 0.05). However managed C. lusitanica had significantly higher seedling regeneration (stem density ha− 1) than other plantation and adjacent natural forests (F = 16.11, p < 0.05). Generally mean stem densities including tree, sapling and seedling of woody species among different forest types managed C. lusitanica was significantly higher among different forest types (F = 13.01, p < 0.05). From the soil seed bank a total of 22 plant species (20 native and 2 exotic) species were recovered. In different forest types the number of species recorded was in adjacent natural forest (19), managed C. lusitanica (11), unmanaged C. lusitanica (4), managed E. globules (7) and unmanaged E. globules (5). The similarity of the oil seed bank was more or less similar to the above ground flora with maximum Sorenson’s similarity values of 0.633. Generally with appropriate management intervention undergrowth vegetation and soil seed bank status in plantation forest had good species composition and diversity.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Indra Dwipa ◽  
CHIKA SUMBARI ◽  
ASWALDI ANWAR

Abstract. Dwipa I, Sumbari C, Anwar A. 2020. Plant soil seed bank analysis in wildfire former area of Mount Talang, West Sumatra, Indonesia. Biodiversitas 21: 155-160. Forest wildfire affects the ecosystems that live in it. One of them is plant ecosystem. One of forest wildfire occurred in Mount Talang, West Sumatra, Indonesia on February 1, 2018. This research aimed to study the soil seed bank that grew after wildfire in mount Talang. The sampling collection was done from former forest fire and natural forest. Germination of soil seed bank was conducted in the Laboratory of Seed Technology, Faculty of Agriculture and identification was conducted in Herbarium of Department of Biology, Faculty of Mathematics and Natural Science, Andalas University, Padang, Indonesia. Nested sampling was used in this study. Two natural forest and 2 former forest wildfire sites were used as sampling locations. Observation plot for sampling collection sized as 2 m x 2 m for sowing, 5 m x 5 m for stake, 10 m x 10 m for pole and 20 m x 20 m for tree. In plot, soil seed bank sampling was taken in 0-5 cm, 5-10 cm, 10-15 cm and 15-20 cm in depth. The result showed that 1 family and 14 plant-soil seed bank species were found in natural forest and 8 plant-soil seed bank was found in forest wildfire former area.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdullah Al Mamun ◽  
Mohammed Kamal Hossain ◽  
Md. Akhter Hossain

PurposeIn this paper, the authors show that ecological restoration potential through natural regeneration of degraded tropical rainforest is possible. This is significant because at present most of the tropical forest of the world, including of Bangladesh, are degraded.Design/methodology/approachRegeneration status of Chunati Wildlife Sanctuary (CWS) was assessed through stratified random sampling method using sample plots of 5 × 5 m in size covering 269 sample plots.FindingsA total of 3,256 regenerating seedlings/saplings of 105 species belonging to 35 families were recorded from CWS. From regenerating tree species, maximum (37.83) family importance value (FIV) index was found for Euphorbiaceae followed by Myrtaceae (18.03). Maximum importance value index (IVI) was found for Aporosa wallichii (21.62) followed by Grewia nervosa (16.41). Distribution of seedlings into different height classes of regenerating tree species was also calculated.Practical implicationsForest scientists are working to find out the best nature-based solution for ecological restoration of tropical rainforests to attain climate resilient ecosystem in a sustainable way. Tropical rain forest has huge plant diversity, and we find that ecological restoration is possible through natural regeneration from its rich soil seed bank. Natural regeneration is the best nature-based solution for sustainable management of the forest.Social implicationsThe authors believe that the findings presented in our paper will appeal to the forest and environmental scientists. The findings will allow readers to understand degraded tropical hill forest ecosystem and its management strategy.Originality/value The authors believe that this manuscript will give a clear picture about degraded tropical hill forest ecosystem and its genetic composition, diversity and soil seed bank status to apply appropriate management strategy.


2010 ◽  
Vol 26 (5) ◽  
pp. 714-719
Author(s):  
Ming LI ◽  
De-ming JIANG ◽  
Yong-ming LUO ◽  
Xiu-mei WANG ◽  
Bo LIU ◽  
...  

2012 ◽  
Author(s):  
T. R. Huggins ◽  
B. A. Prigge ◽  
M. R. Sharifi ◽  
P. W. Rundel

2021 ◽  
Vol 25 ◽  
pp. e01403
Author(s):  
Yao Huang ◽  
Hai Ren ◽  
Jun Wang ◽  
Nan Liu ◽  
Shuguang Jian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document