Soil Organic Matter Quality and Zinc and Lead Sorption as Affected by a Sewage Sludge Or a Sewage Sludge Compost Application

2008 ◽  
Vol 16 (4) ◽  
pp. 239-249 ◽  
Author(s):  
R. Vaca ◽  
J.A. Lugo ◽  
M.V. Esteller ◽  
P. del Aguila
2019 ◽  
Vol 135 ◽  
pp. 396-406 ◽  
Author(s):  
Bryony E.A. Dignam ◽  
Maureen O'Callaghan ◽  
Leo M. Condron ◽  
Jos M. Raaijmakers ◽  
George A. Kowalchuk ◽  
...  

2018 ◽  
Vol 18 (8) ◽  
pp. 2748-2748 ◽  
Author(s):  
Gabriela Barančíková ◽  
Maria Jerzykiewicz ◽  
Erika Gömöryová ◽  
Erika Tobiašová ◽  
Tadeáš Litavec

Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1612 ◽  
Author(s):  
Nikolett Uzinger ◽  
Tünde Takács ◽  
Tibor Szili-Kovács ◽  
László Radimszky ◽  
Anna Füzy ◽  
...  

The short-term effects of processed waste materials: sewage sludge compost (up to 0.5%), biochar made of paper sludge and grain husk (BC) (up to 2%) combined with plant growth-promoting rhizobacterial (PGPR) inoculum, on the fertility of acidic sandy soil at 65% of field capacity were tested in a pot experiment in separate and combined treatments. The soil pH, organic matter content, total and plant-available nutrients, substrate-induced respiration, arbuscular mycorrhizal fungal (AMF) root colonisation parameters and maize (Zea mays L.) biomass were investigated in experiments lasting two months. The positive priming (21% organic matter loss) induced by BC alone was not observed after combined application. The combination of compost and PGPR with 1.5% BC resulted in 35% higher P and K availability due to greater microbial activity compared to BC alone. Only compost applied alone at 0.5% gave a 2.7 times increase in maize biomass. The highest microbial activity and lowest AMF colonisation were found in combined treatments. In the short term the combined application of BC, compost and PGPR did not result in higher fertility on the investigated soil. Further research is needed with a wider range of combined treatments on acidic sandy soil for better understanding of the process.


2018 ◽  
Vol 10 (8) ◽  
pp. 341
Author(s):  
Rodrigo Santos Moreira ◽  
Marcio Koiti Chiba ◽  
Isabella Clerici De Maria ◽  
Caio César Zito Siqueira ◽  
Aildson Pereira Duarte ◽  
...  

Soil organic matter is considered a key attribute for a sustainable agricultural production and is influenced by the quantity and quality of the crop residue deposited on the soil surface. Therefore, different crop rotations could change the soil organic matter pools. The objectives of this study were to evaluate the soil carbon pools obtained by chemical and physical fractionation methods and the humification index under different crop rotations in a no-till system. We test the following hypothesis: a) the distribution of C and N among the soil organic matter fractions depends on plant species rotation schemes and; b) labile fractions are more sensitive to the input of crop residues and therefore, more suitable for evaluating the impact of different crop rotations in the soil organic matter quality. We evaluated four crop sequences (corn/corn/corn; corn/wheat/corn; soybean/wheat/corn and soybean/corn/corn) in a no-till system. A five-year reforested area was used as reference. We determined the total C and N contents, the mineral-associated C and N, the light fraction of C and N, the labile carbon extracted with KMnO4 and the soil organic matter humification index. We found narrow differences between the crop rotation systems in the total C and N levels, the mineral-associated C and N fractions and the labile C extracted with KMnO4. The diversification of the agricultural system with soybean in crop rotation favored the accumulation of light fraction C and N in the soil that were more efficient to provide information about the changes in the soil organic matter quality.


2019 ◽  
Vol 143 (2) ◽  
pp. 257-274 ◽  
Author(s):  
Heidi Aaltonen ◽  
Kajar Köster ◽  
Egle Köster ◽  
Frank Berninger ◽  
Xuan Zhou ◽  
...  

2004 ◽  
Vol 38 (1) ◽  
pp. 63-73 ◽  
Author(s):  
Daniel M. White ◽  
D.Sarah Garland ◽  
Chien-Lu Ping ◽  
Gary Michaelson

Sign in / Sign up

Export Citation Format

Share Document